All Issue

2022 Vol.27, Issue 4 Preview Page

Research Article

31 December 2022. pp. 11-19
Abstract
References
1
D. Kim, Review on the development trend of hydrogen gas turbine combustion technology, J. Korean Soc. Combust., 24(4) (2019) 1-10. 10.15231/jksc.2019.24.4.001
2
Y. Joo, M. Kim, J. Park, S. Park, J. Shin, Hydorgen enriched gas turbine: core technologies and R&D trend, Trans. Korean Hydro. New Energy Soc., 31(4) (2020) 351-362. 10.7316/KHNES.2020.31.4.351
3
H. Kim, U. Jin, Y. Go, M. Choi, I. Gu, M. Baek, K. Kim, D. Shin, A review of carbon neutral gas turbine combustion technology, J. Korean Soc. Combust., 27(2) (2022) 14-38. 10.15231/jksc.2022.27.2.014
4
E.-S. Cho, H. Jeong, J. Hwang, M. Kim, A novel 100% hydrogen gas turbine combustor development for industrial use, Proceedings of ASME Turbo Expo 2022, GT2022-80619. 10.1115/GT2022-80619
5
A. Vranos, E.D. Taback, C.W. Shipman, An experimental study of the stability of hydrogen-air diffusion flames, Combust. Flame., 12 (1968) 253-260. 10.1016/0010-2180(68)90022-9
6
E-.S. Cho, S.H. Chung, Improvement of flame stability and NOX reduction in hydrogen-added ultra lean premixed combustion, J. Mech. Sci. Technol., 23(3) (2009) 650-658. 10.1007/s12206-008-1223-x
7
E.-S. Cho, S.H. Chung, T.K. Oh, Local Karlovitz numbers at extinction for various fuels in counterflow premixed flames, Combust. Sci. Technol., 178(9) (2006) 1559-1584. 10.1080/00102200500536175
8
W. York, Advanced IGCC/Hydrogen Gas Turbine Development, Final Technical Report, GE Power and Water, 2015.
9
P. Chiesa, G. Lozza, L. Mazzocchi, Using hydrogen as gas turbine fuel, J. Eng. Gas Turbines Power, 127(1) (2005) 73-80. 10.1115/1.1787513
10
J. Hwang, N. Bouvet, K. Sohn, Y. Yoon, Stability characteristics of non-premixed turbulent jet flames of hydrogen and syngas blends with coaxial air, Int. J. Hydrog. Energy, 38 (2013), 5139-5149. 10.1016/j.ijhydene.2013.01.182
11
J. Hwang, K. Sohn, N. Bouvet, Y. Yoon, NOX Scaling of Syngas H2/CO Turbulent Non-Premixed Jet Flames, Combust. Sci. Technol., 185 (2013) 1715-1734. 10.1080/00102202.2013.831847
12
M. Lee, J. Yoon, S. Joo, J. Kim, J. Hwang, Y. Yoon, Investigation into the cause of high multi-mode combustion instability of H2/CO/CH4 syngas in a partially premixed gas turbine model combustor, Proc. Combust. Inst., 35 (2015) 3263-3271. 10.1016/j.proci.2014.07.013
13
S. Park, Pressure Effect on NO Formation in H2/CO Premixed Flames, J. Korean Soc. Combust., 24(3) (2019) 26-32. 10.15231/jksc.2019.24.3.026
14
A.C. Benim, K.J. Syed, Flashback mechanisms in lean premixed gas turbine combustion, Academic Press, Elsevier, USA, 2015.
15
P. Therkelsen, J. Mauzey, V. McDonell, S. Samuelsen, Evaluation of a low emission gas turbine operated on hydrogen, Proceedings of ASME Turbo Expo 2006, GT2006-90725. 10.1115/GT2006-90725
16
P. Therkelsen, T. Wertz, V. McDonell, S. Samuelsen, Analysis of nox formation in a hydrogen-fueled gas turbine engine, J. Eng. Gas Turbines Power, 131 (2009) 031507. 10.1115/1.3028232
17
A. Kalantari, V. McDonell, S. Samuelsen, S. Farhangi, D. Ayers, Towards improved boundary layer flashback resistance of a 65kw gas turbine with a retrofittable injector concept, Proceedings of ASME Turbo Expo 2018, GT2018-75834. 10.1115/GT2018-75834
18
H. H.-W. Funke, S. Boerner, J. Keinz, K. Kusterer, D. Kroniger, J. Kitajima, M. Kazari, A. Horikawa, Numerical and experimental characterization of low nox micromix combustion principle for industrial hydrogen gas turbine applications, Proceedings of ASME Turbo Expo 2012, GT2012-69421. 10.1115/GT2012-69421
19
H. H.-W. Funke, S. Boerner, J. Keinz, K. Kusterer, A. H. Ayed, N. Tekin, M. Kazari, J. Kitajima, A. Horikawa, K. Okada, Experimental and numerical characterization of the dry low NOX micromix hydrogen combustion principle at increased energy density for industrial hydrogen gas turbine applications, Proceedings of ASME Turbo Expo 2013, GT2013- 94771. 10.1115/GT2013-94771
20
A.H. Ayed, K. Kusterer, H. H.-W. Funke, J. Keinz, M. Kazari, J. Kitajima, A. Horikawa, K. Okada, D. Bohn, Numerical study on increased energy density for the DLN micromix hydrogen combustion principle, Proceedings of ASME Turbo Expo 2014, GT2014-25848. 10.1115/GT2014-25848
21
H. H.-W. Funke, N. Beckmann, S. Abanteriba, An overview on dry low NOX micromix combustor development for hydrogen-rich gas turbine applications, Int. J. Hydrog. Energy, 44 (2019), 6978-6990. 10.1016/j.ijhydene.2019.01.161
22
N.T. Weiland, T.G. Sidwell, P.A. Strakey, Testing of a hydrogen diffusion flame array injector at gas turbine conditions, Combust. Sci. Technol., 185 (2013) 1132-1150. 10.1080/00102202.2013.781164
23
W.D. York, W.S. Ziminsky, E. Yilmaz, Development and testing of a low nox hydrogen combustion system for heavy-duty gas turbines, J. Eng. Gas Turbines Power, 135 (2013) 022001. 10.1115/1.4007733
24
R.W. Schefer, W.D. Kulatilaka, B.D. Patterson, T.B. Settersten, Visible emission of hydrogen flames, Combust. Flame., 156 (2009) 1234-1241. 10.1016/j.combustflame.2009.01.011
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 27
  • No :4
  • Pages :11-19
  • Received Date :2022. 09. 07
  • Revised Date :2022. 09. 20
  • Accepted Date : 2022. 09. 22