All Issue

2022 Vol.27, Issue 4 Preview Page

Research Article

31 December 2022. pp. 20-28
Abstract
References
1
IEA World Energy Outlook 2020, International Energy Agency, 2020.
2
S.A. Issacs, M.D. Staples, F. Allroggen, D.S. Mallapragada, C.P. Falter, S.R.H. Barret, Environmental and Economic Performance of Hybrid Power-to-Liquid and Biomass-to-Liquid Fuel Production in the United States, Environ. Sci. Technol. 55(12) (2021) 8247-8257. 10.1021/acs.est.0c0767434081455
3
V. Dieterich, A. Buttler, A. Hanel, H. Spliethoff, S. Fendt, Power-to-liquid via synthesis of methanol, DME or Fischer-Tropsch-fuels: a review, Energy Environ. Sci. 13(10) (2020) 3207-3252. 10.1039/D0EE01187H
4
A. Omari, B. Heuser, S. Pischinger, C. Rüdinger, Potential of long-chain oxymethylene ether and oxymethylene ether-diesel blends for ultra-low emission engines, Appl. Energy 239 (2019) 1242-1249. 10.1016/j.apenergy.2019.02.035
5
D. Pélerin, K. Gaukel, M. Härtl, E. Jacob, G. Wachtmeister, Potentials to simplify the engine system using the alternative diesel fuels oxymethylene ether OME1 and OME3−6 on a heavy-duty engine, Fuel 259 (2020) 116231. 10.1016/j.fuel.2019.116231
6
Y. Pei, M. Mehl, W. Liu, T. Lu, W.J. Pitz, S. Som, A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications, J. Eng. Gas Turb. Power 137(11) (2015) 111502 10.1115/1.4030416
7
K. De Ras, M. Kusenberg, G. Vanhove, Y. Fenard, A. Eschenbacher, R.J. Varghese, J. Aerssens, R.Van de Vijver, L.-S. Tran, J.W. Thybaut, K.M. Van Geem, A detailed experimental and kinetic modeling study on pyrolysis and oxidation of oxymethylene ether-2 (OME-2), Combust. Flame 238 (2022) 111914. 10.1016/j.combustflame.2021.111914
8
L. Marrodán, E. Royo, Á. Millera, R. Bilbao, M.U. Alzueta, High pressure oxidation of dimethoxymethane, Energy Fuels 29 (2015) 3507-3517. 10.1021/acs.energyfuels.5b00459
9
S. Jacobs, M. Döntgen, A.B.S. Alquaity, W.A. Kopp, L.C. Kröger, U. Burke, H. Pitsch, K. Leonhard, H.J. Curran, K.A. Heufer, Detailed kinetic modeling of dimethoxymethane. Part II: experimental and theoretical study of the kinetics and reaction mechanism, Combust. Flame 205 (2019) 522-533. 10.1016/j.combustflame.2018.12.026
10
L. Golka, I. Weber, M. Olzmann, Pyrolysis of dimethoxymethane and the reaction of dimethoxymethane with H atoms: a shock-tube/ARAS/TOF-MS and modeling study, Proc. Combust. Inst. 37 (2019) 179-187. 10.1016/j.proci.2018.05.036
11
T. He, Z. Wang, X. You, H. Liu, Y. Wang, X. Li, X. He, A chemical kinetic mechanism for the low- and intermediate-temperature combustion of Polyoxymethylene Dimethyl Ether 3 (PODE3), Fuel 212 (2018) 223-235. 10.1016/j.fuel.2017.09.080
12
W. Sun, G. Wang, S. Li, R. Zhang, B. Yang, J. Yang, Y, Li, C.K. Westbrook, C.K. Law, Speciation and the laminar burning velocities of poly(oxymethylene) dimethyl ether 3 (POMDME3) flames: an experimental and modeling study, Proc. Combust. Inst. 36 (2017) 1269-1278. 10.1016/j.proci.2016.05.058
13
C.W. Gao, J.W. Allen, W.H. Green, R.H. West, Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms, Comput. Phys. Commun. 203 (2016) 212-225. Available at: https://rmg.mit.edu 10.1016/j.cpc.2016.02.013
14
D.G. Goodwin, H.K. Moffat, I. Schoegl, R.L. Speth, B.W. Weber, Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, Available at: https://www.cantera.org (2022) Version 2.6.0.
15
B. Chen, M. Hellmuth, S. Faller, L. May, P. Liu, L. Cai, W.L. Roberts, H. Pitsch, Exploring the combustion chemistry of anisole in laminar counterflow diffusion- flames under oxy-fuel conditions, Combust. Flame 243 (2022) 111929. 10.1016/j.combustflame.2021.111929
16
L. Xu, F. Yan, Y. Wang, A comparative study of the sooting tendencies of various C5-C8 alkanes, alkenes and cycloalkanes in counterflow diffusion flames, Appl. Energy Combust. Sci. 1-4 (2020) 100007. 10.1016/j.jaecs.2020.100007PMC7557285
17
S.M. Sarathy, M.J. Thomson, W.J. Pitz, T. Lu, An experimental and kinetic modeling study of methyl decanoate combustion, Proc. Combust. Inst. 33(1) (2011), 399-405. 10.1016/j.proci.2010.06.058
18
K. Seshadri, F.A. Williams, Laminar flow between parallel plates with injection of a reactant at high reynolds number, Int. J. Heat Mass Transfer 21(2) (1978) 251-253. 10.1016/0017-9310(78)90230-2
19
J.A. Cooke, M. Bellucci, M.D. Smooke, A. Gomez, A. Violi, T. Faravelli, E. Ranzi, Computational and experimental study of JP-8, a surrogate, and its component in counterflow diffusion flames, Proc. Combust. Inst. 30 (2005) 439-446. 10.1016/j.proci.2004.08.046
20
J. Yanowitz, M.A. Ratcliff, R.L. McCormick, J.D. Taylor, M.J. Murphy, Compendium of Experimental Cetane Numbers, National Renewable Energy Laboratory Technical Report NREL/TP-5400-67585 (2017). 10.2172/1345058
21
S.W. Wagnon, M.S. Wooldridge, Effects of buffer gas composition on autoignition, Combust. Flame 161(4) (2014) 898-907. 10.1016/j.combustflame.2013.09.022
22
J. Wullenkord, I. Graf, M. Baroncelli, D. Felsmann, L. Cai, H. Pitsch, K. Kohse-Höinghaus, Laminar premiexed and non-premixed flame investigation on the influence of dimethyl ether addition on n-heptane combustion, Combust. Flame 212 (2020) 323-336. 10.1016/j.combustflame.2019.11.012
23
K.Y. Lee, Effect of Methyl Decanoate Addition on Aromatic Formation in Counterflow Non-premixed Flame of Diesel Fuel Surrogate, J. Korean Soc. Combust. 24(4) (2019) 11-17. 10.15231/jksc.2019.24.4.011
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 27
  • No :4
  • Pages :20-28
  • Received Date :2022. 07. 31
  • Revised Date :2022. 09. 20
  • Accepted Date : 2022. 09. 22