All Issue

2022 Vol.27, Issue 4

Research Article

31 December 2022. pp. 1-10
Abstract
References
1
J. Ahn, CFD Study on Combustion Chamber of Water-Tube Type Boiler with Dual Partial-Premixed Low NOX Burners, J. Korean Soc. Combust. 23(4) (2018) 39-44. 10.15231/jksc.2018.23.4.039
2
J.S. Oh, S.B. Kang, H.H. Lee, K.S. Choi, Application and Feasibility Study with the Concept of Water Spray and Condensing Heat Exchange to Enhance Thermal Energy Usage and System Efficiency in a Boiler, Trans. Korean Soc. Mech. Eng. C, 7(2) (2019) 93-98. 10.3795/KSME-C.2019.7.2.093
3
M.W. Bae, K.H Jung, S.B. Park, A Study on Effect of Recirculated Exhaust Gas upon Performance and Exhaust Emissions in a Power Plant Boiler with FGR System, Trans. Korean Soc. Mech. Eng. B 40(4) (2016) 263-273. 10.3795/KSME-B.2016.40.4.263
4
J.Y. Park, J.U. Park, Technological Trends of Industrial Boiler Ultra-Low NOX Combustors, News and Info Chem. Eng. 38(3) (2020) 316-321.
5
J.L. Reese, V. Reddy, H.B. Lange, C. Chang, L.J. Radak, C.F. Youssef, Demonstration of Fuel Injection Recirculation (FIR) for NOX Emissions Control, AFRC/JFRC Conference (1994)
6
J.D. Sullivan, M.J. Duret, Development of the Radiation Stabilized Distributed Flux Burner, DOE Office of Scientific and Technical Information (OSTI), (1997) 10.2172/488803
7
J.J. Feese, S.R. Turns, Nitric Oxide Emissions from Laminar Diffusion Flames: Effects of Air-Side versus Fuel-Side Diluent Addition, Combust. Flame 113 (1998) 66-78. 10.1016/S0010-2180(97)00217-4
8
G.M. Choi, M. Katsuki, Chemical kinetic study on the reduction of nitric oxide in highly preheated air combustion, Symposium (International) on Combustion 29 (2002) 1165-1171. 10.1016/S1540-7489(02)80147-X
9
J.W. Han, S.M. Kum, C.E. Lee, Investigation on Flame Characteristics' Variation by Flue Gas Recirculation and Fuel Injection Recirculation, Trans. Korean Soc. Mech. Eng. B, 28(12) (2004) 1625-1631. 10.3795/KSME-B.2004.28.12.1625
10
J.S. Park, J. Park, H.C. Cho, No Emission characteristics of Oxygen-Enriched Combustion with CO2 Recirculation in Counterflow Diffusion Flame, J. Korean Soc. Combust. 12(1) (2007) 28-37.
11
J. Park, O.B. Kwon, S.W. Kim, C.Y. Lee, S.I. Keel, J.H. Yun, I.G. Lim, A Study on Flame Structure and NO Emission in FIR- and FGR-applied Methane-air Counterflow Diffusion Flames, J. Korean Soc. Combust. 21(1) (2016) 38-45. 10.15231/jksc.2016.21.1.038
12
V. Mallikarjuna, N. Jashuva, B. Rama Bhupal Reddy, Improving boiler efficiency by using air preheater, Int. J. Adv. Res. in Eng. Appl. Sci. 3(2) (2014) 11-24.
13
B.H. Jang, D.H. Kim, Y.M. Kim, M.J. Kwon, C.Y. Lee, Experimental Study on Low NOX Burner Used for Heating Medium Boiler, Korean Soc. Energy Climate Change, 11(2) (2016) 91-99.
14
R.J. Kee, J.A. Miller, G.H. Evans, G. Dixon-Lewis, A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flame, Symposium (International) on Combustion 22 (1989) 1479-1494. 10.1016/S0082-0784(89)80158-4
15
A.E. Lutz, R.J. Kee, J.F. Grcar, F.M. Rupley, A fortran program for computing opposed-flow diffusion flames, Sandia National Laboratories Report. SAND 96-8243 (1997). 10.2172/568983
16
K. Maruta, M. Yoshida, H. Guo, Y. Ju, T. Niioka, Extinction of low-stretched diffusion flame in microgravity, Combust. Flame 112 (1998) 181-187. 10.1016/S0010-2180(97)81766-X
17
D.G. Park, J.H. Yun, J. Park, S.I. Keel, A Study on Flame Extinction and Edge Flame Oscillation in Counterflow Diffusion Flame, J. Korean Soc. Propul. Eng. 13(2) (2009) 64-76.
18
Y. Ju, H. Guo, K. Maruta, F. Liu, On the extinction limit and flammability limit of non-adiabatic stretched methane-air premixed flames, J. Fluid Mech. 342 (1997) 315-334. 10.1017/S0022112097005636
19
R.J. Kee, F.M. Rupley, J.A. Miller, Chemkin II: a fortran chemical kinetics package for analysis of gas phase chemical kinetics, Sandia National Laboratories Report. SAND 89-8009B (1989). 10.2172/5681118PMC2448549
20
R.J. Kee, G. Dixon-Lewis, J. Warnatz, M.E. Coltrin, J.A. Miller, A fortran computer code pa- ckage for the evaluation of gas-phase multi-component transport. Sandia National Laboratories Report. SAND86-8246 (1994).
21
R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller, E. Meeks, Premix: A fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames, Sandia National Laboratories Report SAND (1985) 85-8240.
22
G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr., V.V. Lissianski, Z. Qin, GRI-mech 3.0, Available at: <http://www.me.berkeley.edu/gri_mech/>, (1999).
23
S.R. Turns, An Introduction to Combustion: Concepts and Applications, McGraw-Hill, New York, (2012).
24
E.S. Cho, S.H. Chung, Numerical Study on NO Emission with Flue Gas Dilution in Air and Fuel Sides, J. Mech. Sci. Technol. 19(6) (2005) 1358-1365. 10.1007/BF02984056
25
S.H. Cho, K.M. Lee, Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part Ⅰ. Combustion Characteristics of Low NOX, KIGAS, 23(6) (2019) 8-16.
26
S.H. Cho, G.M. Kim, K.M. Lee, Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part Ⅱ. Analysis of NOX formation mechanism, KIGAS 24(4) (2020) 39-47.
27
M. Nishioka, S. Nakagawa, T. Takeno, NO emission characteristics of methane-air double flame, Combust. Flame, 98(1-2) (1994) 127-138. 10.1016/0010-2180(94)90203-8
28
E.S. Cho, S.H. Chung, Numerical evaluation of NOX mechanisms in methane-air counterflow premixed flames, J. Mech. Sci. Technol. 23 (2009) 659-666. 10.1007/s12206-008-1222-y
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 27
  • No :4
  • Pages :1-10
  • Received Date :2022. 04. 10
  • Revised Date :2022. 09. 03
  • Accepted Date : 2022. 09. 23