All Issue

2022 Vol.27, Issue 4 Preview Page

Research Article

31 December 2022. pp. 29-39
Abstract
References
1
J. Tillou, J.B. Michel, C. Angelberger, D. Veynante, Assessing LES models based on tabulatedchemistry for the simulation of Diesel spray combustion, Combust. Flame 161 (2014) 525-540. 10.1016/j.combustflame.2013.09.006
2
X. Cheng, H.K. Ng, S. Gan, J.H. Ho, K.M. Pang, Development and Validation of a Generic Reduced Chemical Kinetic Mechanism for CFD Spray Combustion Modeling of Biodiesel Fuels, Combust. Flame 162 (2015) 2354-2370. 10.1016/j.combustflame.2015.02.003
3
S.M. Aceves, J.M. Frias, D.L. Flowers, J.R. Smith, A Decoupled Model of Detailed Fluid Mechanics Followed by Detailed Chemical Kinetics for Prediction of Iso-Octane HCCI Combustion, Int. J. Fuels Lubr. 110 (2001) 2135-2146. 10.4271/2001-01-3612
4
E.M. Fisher, W.J. Pitz, H.J. Curran, C.K. Westbrook, Detailed Chemical Kinetic Mechanisms for Combustion of Oxygenated Fuels, Proc. Combust. Inst. 28 (2000) 1579-1586. 10.1016/S0082-0784(00)80555-X
5
Y. Ra, R.D. Reitz, A Combustion Model for IC Engine Combustion Simulations with Multi-component Fuels, Combust. Flame 158 (2011) 69-90. 10.1016/j.combustflame.2010.07.019
6
H. Li, W. Yang, D. Zhou, W. Yu, Skeletal Mechanism Construction for Heavy Saturated Methyl Esters in Real Biodiesel Fuels, Fuel 239 (2019) 263-271. 10.1016/j.fuel.2018.11.020
7
O. Herbinet, W.J. Pitz, C.K. Westbrook, Detailed Chemical Kinetic Oxidation Mechanism for a Biodiesel Surrogate, Combust. Flame 154 (2008) 507-528. 10.1016/j.combustflame.2008.03.003
8
H. An, W. Yang, J. Li, A. Maghbouli, K.J. Chua, S.K. Chou, A Numerical Modeling on the Emission Characteristics of a Diesel Engine Fueled by Diesel and Biodiesel Blend Fuels, App. Energy 130 (2014) 458-465. 10.1016/j.apenergy.2014.01.004
9
H.M. Ismail, H.K. Ng, S. Gan, T. Lucchini, A. Onorati, Development of a Reduced Biodiesel Combustion Kinetics Mechanism for CFD Modelling of a Light-duty Diesel Engine, Fuel 106 (2013) 388-400. 10.1016/j.fuel.2012.10.015
10
T. Lu, C.K. Law, A Directed Relation Graph Method for Mechanism Reduction, Proc. Combust. Inst. 30 (2005) 1333-1341. 10.1016/j.proci.2004.08.145
11
P.P. Desjardins, H. Pitsch, An Efficient Error-propagation-based Reduction Method for Large Chemical Kinetic Mechanisms, Combust. Flame 154 (2008) 67-81. 10.1016/j.combustflame.2007.10.020
12
K.E. Niemeyer, C.J. Sung, M.P. Raju, Skeletal Mechanism Generation for Surrogate Fuels Using Directed Relation Graph with Error Propagation and Sensitivity Analysis, Combust. Flame 157 (2010) 1760-1770. 10.1016/j.combustflame.2009.12.022
13
J.L. Brakora, R.D. Reitz, A Comprehensive Combustion Model for Biodiesel-Fueled Engine Simulations, SAE Technical Paper Series, No. 2013-01-1099. 10.4271/2013-01-1099
14
J. Pan, H. Wei, G. Hju, Z. Chen, P. Zhao, The Role of Low Temperature Chemistry in Combustion Mode Development under Elevated Pressures, Combust. Flame, 174 (2016) 17-193. 10.1016/j.combustflame.2016.09.012
15
A. Zehni, R.K. Saray, K. Poorghasemi, Numerical Comparison of PCCI Combustion and Emission of Diesel and Biodiesel Fuels at Low Load Conditions Using 3-D CFD Models Coupled with Chemical Kinetics, Appl. Therm. Eng. 110 (2017) 1483-1499. 10.1016/j.applthermaleng.2016.09.056
16
C. Pichler, E.J.K. Nilsson, Composition of Reduced Mechanisms for Ignition of Biodiesel Surrogates, Fuels 1 (2020) 15-29. 10.3390/fuels1010003
17
J.W. Jung, Y.C. Lim, H.K. Suh, A Study on the Mechanism Reduction and Evaluation of Biodiesel with the Change of Mechanism Reduction Factors, Proc. Inst. Mech. Eng. D: J. Automob. Eng. 234(14) (2020) 3398-3413. 10.1177/0954407020931694
18
H. Wang, Q. Jiao, M. Yao, B. Yang, L. Qiu, R.D. Retiz, Development of an n-heptane/toluene/polyaromatic Hydrocarbon Mechanism and its Application for Combustion and Soot Prediction, Int. J. Engine Res. 14(5) (2013) 434-451. 10.1177/1468087412471056
19
S. H. Park, S. H. Yoon, H. J. Kim, C. S. Lee, "Effect of the Spray-atomization Characteristics on the Nano Size Particle Exhaust Emissions Characteristics Using Biodiesel-Bioethanol Blended Fuels in a DI Diesel Engine with Common Rail Injection System," ASME Internal Combustion Engine Division Spring Technical Conference, May 3rd-6th, 2009 67-76. 10.1115/ICES2009-76062PMC2800033
20
T. Liu, J. E, W.M. Yang, Y. Deng, H. An, Z. Zhang, M. Pham, Investigation on the applicability for reaction rates adjustment of the optimized biodiesel skeletal mechanism, Energy 150 (2018) 1031-1038. 10.1016/j.energy.2018.03.026
21
P. Diévart, S.H. Won, S. Dooley, F.L. Dryer, Y. Ju, A kinetic model for methyl decanoate combustion, Combust. Flame 159(5) (2012) 1793-1805. 10.1016/j.combustflame.2012.01.002
22
R. Colline, J. Nygren, M. Richter, M. Alden, L. Hildingsson, B. Johansson, Simultaneous OH- and Formaldehyde-LIF Measurements in an HCCI Engine, SAE Trans. 112(4) (2003) 2479-2486. 10.4271/2003-01-3218
23
J.L. Brakora, Y. Ra, T.D. Reitz, J. Mcfarlane, C.S. DAW, Development and Validation of a Reduced Reaction Mechanism for Biodiesel Fueled Engine Simulation, Int. J. Fuels Lubr. 1 (2009) 685-702. 10.4271/2008-01-1378
24
A. Hossain, Y. Nakamura, A Numerical Study on the Ability to Predict the Heat Release Rate Using CH* Chemiluminescence in Non-sooting Counterflow Fiffusion Flames, Combust. Flame 161 (2014) 162-172. 10.1016/j.combustflame.2013.08.021
25
L. Zhang, X. Ren, Z. Lan, A Reduced reaction mechanism of biodiesel surrogates with low temperature chemistry for multidimensional engine simulation, Combust. Flame 212 (2020) 377-387. 10.1016/j.combustflame.2019.11.002
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 27
  • No :4
  • Pages :29-39
  • Received Date :2022. 05. 24
  • Revised Date :2022. 06. 03
  • Accepted Date : 2022. 10. 27