All Issue

2025 Vol.30, Issue 1 Preview Page

Research Article

31 March 2025. pp. 57-66
Abstract
References
1

National Research Council, Review and evaluation of the air force hypersonic technology program, National Academy Press, Washington D.C., (1998) 5-17.

2

D.M. Van Wie, S.M. D'Alessio, M.E. White, Hypersonic air-breathing propulsion, Johns Hopkins APL Technology Digest, 26(4) (2005) 430-437.

3

D.R. Sobel, L.J. Spadaccini, Hydrocarbon fuel cooling technologies for advanced propulsion, J. Eng. Gas Turbine. Power, 119(2) (1997) 344-351.

10.1115/1.2815581
4

T. Edwards, Liquid fuels and propellants for aerospace propulsion: 1903-2003, J. Propuls. Power, 19(6) (2003) 1089-1107.

10.2514/2.6946
5

T. Edwards, Cracking and deposition behavior of supercritical hydrocarbon aviation fuels, Combust. Sci. Technol., 178 (2006) 307-334.

10.1080/00102200500294346
6

N. Gascoin, P. Gillard, S. Bernard, M. Bou chez, Characterisation of coking activity during supercritical hydrocarbon pyrolysis, Fuel Process. Technol., 89 (2008) 1416-1428.

10.1016/j.fuproc.2008.07.004
7

H. Lander, A. C. Nixon, Endothermic fuels for hypersonic vehicles, J. Aircr., 8 (1971) 200-207.

10.2514/3.44255
8

D. T. Wickham, J. R. Engel, S. Rooney, B. D. Hitch, Additives to improve fuel heat sink capacity in air/fuel heat exchangers, J. Propuls. Power, 24 (2008) 55-63.

10.2514/1.24336
9

C. Qi, Q. H. Lin, Y. Y. Li, S. P. Pang, R. B. Zhang, C-N bond dissociation energies: An assessment of contemporary DFT methodologies, Journal of Molecular Structure: THEOCHEM, 961(1-3) (2010) 97-100.

10.1016/j.theochem.2010.09.005
10

X. Shi, Y. Pan, Z. Gong, X. Zhang, H. Zhu, Pyrolysis behaviors of di-tert-butyl peroxide in gas and liquid phases: A ReaxFF molecular dynamics simulation, Fuel, 351 (2023) 128930.

10.1016/j.fuel.2023.128930
11

Z. Jia, W. Zhou, W. Yu, Z. Han, Experimental investigation on pyrolysis of n-decane initiated by nitropropane under supercritical pressure in a miniature tube, Energy and Fuels, 33(6) (2019) 5529-5537.

10.1021/acs.energyfuels.9b00593
12

K. J. Laidler, J. Keith, Chemical kinetics, New York: McGraw-Hill, (1965).

13

V. Kalyan, S. Konda, K. B. Vipin, S. Dinda, In-situ cooling capacity of a hydrocarbon fuel under supercritical conditions: heat sink, coke deposition, and impact of initiator, Fuel Communications, 12 (2022) 100075.

10.1016/j.jfueco.2022.100075
14

S. Priyadarshi, M. S. N. Kishore, R. Vinu, Analytical pyrolysis of jet fuel using different free radical initiators to produce low molecular weight hydrocarbons, J. Anal. Appl. Pyrolysis, 162 (2022) 105430.

10.1016/j.jaap.2021.105430
15

G. He, X. Wu, D. Ye, Y. Guo, S. Hu, Y. Li, W. Fang, Hyperbranched poly (amidoamine) as an efficient macroinitiator for thermal cracking and heat-sink enhancement of hydrocarbon fuels, Energy and Fuels, 31(7) (2017) 6848-6855.

10.1021/acs.energyfuels.7b00751
16

R. Chen, Y. Liu, C. Yin, L. Wang, L. Zhang, J. Song, H. Sun, A study on the pyrolysis of n-hexane initiated by 1-nitropropane: Molecular dynamics simulations and SVUV-PIMS experiments, J. Anal. Appl. Pyrolysis, 175 (2023) 106194.

10.1016/j.jaap.2023.106194
17

Q. D. Wang, X. X. Hua, X. M. Cheng, J. Q. Li, X. Y. Li, Effects of Fuel Additives on the Thermal Cracking of n-Decane from Reactive Molecular Dynamics, J. Phys. Chem. A, 116(15) (2012) 3794-3801.

10.1021/jp300059a
18

Y. Guan, J. Lou, R. Liu, H. Ma, J. Song, Reactive molecular dynamics simulation on thermal decomposition of n-heptane and methylcyclohexane initiated by nitroethane, Fuel, 261 (2020) 116447.

10.1016/j.fuel.2019.116447
19

K. Chenoweth, A. C. T. Van Duin, W. A.Goddard, ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation, J. Phys. Chem. A, 112 (2008) 1040-1053.

10.1021/jp709896w
20

M. Kowalik, C. Ashraf, B. Damirchi, D. Akbarian, S. Rajabpour, A. C. T. Van Duin, Atomistic scale analysis of the carbonization process for C/H/O/N-Based polymers with the ReaxFF reactive force field, J. Phys. Chem. B, 123 (2019) 5357-5367.

10.1021/acs.jpcb.9b04298
21

A. M. Kamat, A. C. T. van Duin, A. Yakovlev, Molecular Dynamics Simulations of Laser-Induced Incandescence of Soot Using an Extended ReaxFF Reactive Force Field, J. Phys. Chem. A, 114 (2010) 12561-12572.

10.1021/jp1080302
22

P. Nageswara Rao, D. Kunzru, Thermal cracking of JP-10: Kinetics and product distrubution, J. Anal. Appl. Pyrolysis, 76 (2006) 154-160.

10.1016/j.jaap.2005.10.003
23

Y. Liu, R. Chen, J. Liu, X. Zhang, Research progress of catalysts and initiators for promoting the cracking of endothermic hydrocarbon fuels, Trans. Tianjin Univ., 28(3) (2022) 199-213.

10.1007/s12209-022-00315-0
24

D. Sun, C. Li, Y. Du, L. Kou, J. Zhang, Y. Li, Z. Wang, J. Li, H. Feng, J. Lu, Effects of endothermic hydrocarbon fuel composition on the pyrolysis and anticoking performance under supercritical conditions, Fuel, 239 (2019) 659-666.

10.1016/j.fuel.2018.11.003
25

D. Wickham, G. Alptekin, J. Engel, M. Karpuk, Additives to reduce coking in endothermic heat exchangers, In 35th Joint Propulsion Conference and Exhibit, (1999) 2215.

10.2514/6.1999-2215
26

R. Edina, B. Bela, F. Bela, Formation and growth mechanisms of polycyclic aromatic hydrocarbons: A mini-review, Chemosphere, 291 (2022) 132793.

10.1016/j.chemosphere.2021.132793
27

H. Liu, J. Liang, R. He, X. Li, M. Zheng, C. Ren, G. An, X. Xu, Z. Zheng, Overall mechanism of JP-10 pyrolysis unraveled by large-scale reactive molecular dynamics simulation, Combust. Flame, 237 (2022) 111865.

10.1016/j.combustflame.2021.111865
Information
  • Publisher :The Korean Society of Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of the Korean Society of Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 30
  • No :1
  • Pages :57-66
  • Received Date : 2025-02-07
  • Revised Date : 2025-02-14
  • Accepted Date : 2025-02-14