Research Article
National Research Council, Review and evaluation of the air force hypersonic technology program, National Academy Press, Washington D.C., (1998) 5-17.
D.M. Van Wie, S.M. D'Alessio, M.E. White, Hypersonic air-breathing propulsion, Johns Hopkins APL Technology Digest, 26(4) (2005) 430-437.
D.R. Sobel, L.J. Spadaccini, Hydrocarbon fuel cooling technologies for advanced propulsion, J. Eng. Gas Turbine. Power, 119(2) (1997) 344-351.
10.1115/1.2815581T. Edwards, Liquid fuels and propellants for aerospace propulsion: 1903-2003, J. Propuls. Power, 19(6) (2003) 1089-1107.
10.2514/2.6946T. Edwards, Cracking and deposition behavior of supercritical hydrocarbon aviation fuels, Combust. Sci. Technol., 178 (2006) 307-334.
10.1080/00102200500294346N. Gascoin, P. Gillard, S. Bernard, M. Bou chez, Characterisation of coking activity during supercritical hydrocarbon pyrolysis, Fuel Process. Technol., 89 (2008) 1416-1428.
10.1016/j.fuproc.2008.07.004H. Lander, A. C. Nixon, Endothermic fuels for hypersonic vehicles, J. Aircr., 8 (1971) 200-207.
10.2514/3.44255D. T. Wickham, J. R. Engel, S. Rooney, B. D. Hitch, Additives to improve fuel heat sink capacity in air/fuel heat exchangers, J. Propuls. Power, 24 (2008) 55-63.
10.2514/1.24336C. Qi, Q. H. Lin, Y. Y. Li, S. P. Pang, R. B. Zhang, C-N bond dissociation energies: An assessment of contemporary DFT methodologies, Journal of Molecular Structure: THEOCHEM, 961(1-3) (2010) 97-100.
10.1016/j.theochem.2010.09.005X. Shi, Y. Pan, Z. Gong, X. Zhang, H. Zhu, Pyrolysis behaviors of di-tert-butyl peroxide in gas and liquid phases: A ReaxFF molecular dynamics simulation, Fuel, 351 (2023) 128930.
10.1016/j.fuel.2023.128930Z. Jia, W. Zhou, W. Yu, Z. Han, Experimental investigation on pyrolysis of n-decane initiated by nitropropane under supercritical pressure in a miniature tube, Energy and Fuels, 33(6) (2019) 5529-5537.
10.1021/acs.energyfuels.9b00593V. Kalyan, S. Konda, K. B. Vipin, S. Dinda, In-situ cooling capacity of a hydrocarbon fuel under supercritical conditions: heat sink, coke deposition, and impact of initiator, Fuel Communications, 12 (2022) 100075.
10.1016/j.jfueco.2022.100075S. Priyadarshi, M. S. N. Kishore, R. Vinu, Analytical pyrolysis of jet fuel using different free radical initiators to produce low molecular weight hydrocarbons, J. Anal. Appl. Pyrolysis, 162 (2022) 105430.
10.1016/j.jaap.2021.105430G. He, X. Wu, D. Ye, Y. Guo, S. Hu, Y. Li, W. Fang, Hyperbranched poly (amidoamine) as an efficient macroinitiator for thermal cracking and heat-sink enhancement of hydrocarbon fuels, Energy and Fuels, 31(7) (2017) 6848-6855.
10.1021/acs.energyfuels.7b00751R. Chen, Y. Liu, C. Yin, L. Wang, L. Zhang, J. Song, H. Sun, A study on the pyrolysis of n-hexane initiated by 1-nitropropane: Molecular dynamics simulations and SVUV-PIMS experiments, J. Anal. Appl. Pyrolysis, 175 (2023) 106194.
10.1016/j.jaap.2023.106194Q. D. Wang, X. X. Hua, X. M. Cheng, J. Q. Li, X. Y. Li, Effects of Fuel Additives on the Thermal Cracking of n-Decane from Reactive Molecular Dynamics, J. Phys. Chem. A, 116(15) (2012) 3794-3801.
10.1021/jp300059aY. Guan, J. Lou, R. Liu, H. Ma, J. Song, Reactive molecular dynamics simulation on thermal decomposition of n-heptane and methylcyclohexane initiated by nitroethane, Fuel, 261 (2020) 116447.
10.1016/j.fuel.2019.116447K. Chenoweth, A. C. T. Van Duin, W. A.Goddard, ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation, J. Phys. Chem. A, 112 (2008) 1040-1053.
10.1021/jp709896wM. Kowalik, C. Ashraf, B. Damirchi, D. Akbarian, S. Rajabpour, A. C. T. Van Duin, Atomistic scale analysis of the carbonization process for C/H/O/N-Based polymers with the ReaxFF reactive force field, J. Phys. Chem. B, 123 (2019) 5357-5367.
10.1021/acs.jpcb.9b04298A. M. Kamat, A. C. T. van Duin, A. Yakovlev, Molecular Dynamics Simulations of Laser-Induced Incandescence of Soot Using an Extended ReaxFF Reactive Force Field, J. Phys. Chem. A, 114 (2010) 12561-12572.
10.1021/jp1080302P. Nageswara Rao, D. Kunzru, Thermal cracking of JP-10: Kinetics and product distrubution, J. Anal. Appl. Pyrolysis, 76 (2006) 154-160.
10.1016/j.jaap.2005.10.003Y. Liu, R. Chen, J. Liu, X. Zhang, Research progress of catalysts and initiators for promoting the cracking of endothermic hydrocarbon fuels, Trans. Tianjin Univ., 28(3) (2022) 199-213.
10.1007/s12209-022-00315-0D. Sun, C. Li, Y. Du, L. Kou, J. Zhang, Y. Li, Z. Wang, J. Li, H. Feng, J. Lu, Effects of endothermic hydrocarbon fuel composition on the pyrolysis and anticoking performance under supercritical conditions, Fuel, 239 (2019) 659-666.
10.1016/j.fuel.2018.11.003D. Wickham, G. Alptekin, J. Engel, M. Karpuk, Additives to reduce coking in endothermic heat exchangers, In 35th Joint Propulsion Conference and Exhibit, (1999) 2215.
10.2514/6.1999-2215- Publisher :The Korean Society of Combustion
- Publisher(Ko) :한국연소학회
- Journal Title :Journal of the Korean Society of Combustion
- Journal Title(Ko) :한국연소학회지
- Volume : 30
- No :1
- Pages :57-66
- Received Date : 2025-02-07
- Revised Date : 2025-02-14
- Accepted Date : 2025-02-14
- DOI :https://doi.org/10.15231/jksc.2025.30.1.057