All Issue

2025 Vol.30, Issue 1 Preview Page

Research Article

31 March 2025. pp. 67-79
Abstract
References
1

11th, The Basic Plan Electricity Demand. Korean Government. 2024.

2

Valera-Medina, H. Xiao, M. Owen-Jones, W.I.F. David, P.J. Bowen, Ammonia for power, Prog. Energy Combust. Sci., 69 (2018) 63-102.

10.1016/j.pecs.2018.07.001
3

Valera-Medina, H. Xiao, M. Owen-Jones, W.I.F. David, P.J. Bowen, Review on ammonia as a potential fuel: from synthesis to economics, Energy Fuels, 34 (2020) 9444-9559

4

H. Lee, Y. Woo, M.J. Lee, The needs for R&D of ammonia combustion technology for carbon neutrality-Part I: Background and economic feasibility of expanding the supply of fuel ammonia, J. Korean Soc. Combust., 26 (2021) 59-83.

10.15231/jksc.2021.26.1.059
5

H. Lee, Y. Woo, M.J. Lee, The needs for R&D of ammonia combustion technology for carbon neutrality-Part II: R&D trends and technical feasibility analysis, J. Korean Soc. Combust., 26 (2021) 84-106.

10.15231/jksc.2021.26.1.084
6

H. Lee, Y. Woo, M.J. Lee, Ammonia combustion characteristics and technology development trend, J. Korean Soc. Combust., 26 (2021) 107-130.

10.15231/jksc.2021.26.1.059
7

S. Hayakawa, T. Goto, S. Mimoto, K. Kudo, A. Kobayashi, K. Tsujimura, H. Kobayashi, Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures, Fuel, 159 (2015) 98-106.

10.1016/j.fuel.2015.06.070
8

X. Han, Z. Wang, Y. He, Z. Sun, Y. Zhu, K. Cen, Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames, Combust. Flame, 206 (2019) 214-226.

10.1016/j.combustflame.2019.05.003
9

K.P. Shrestha, C. Lhuillier, A. Alves Barbosa, P. Brequigny, F. Contino, C. Mounaïm-Rousselle, L. Seidel, F. Mauss, An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature, Proc. Combust. Inst., 38 (2021) 2163-2174.

10.1016/j.proci.2020.06.197"
10

R. Ichimura, K. Hadi, N. Hashimoto, A. Hayakawa, H. Kobayashi, O. Fujita, Extinction limits of an ammonia/air flame propagating in a turbulent field, Fuel, 246 (2019) 178-186.

10.1016/j.fuel.2019.02.110
11

Y. Xia, G. Hashimoto, K. Sakai, D. Matsumoto, A. Hayakawa, H. Kobayashi, O. Fujita, Turbulent burning velocity of ammonia/oxygen/nitrogen premixed flame in O2-enriched air condition, Fuel, 268 (2020) 117383.

10.1016/j.fuel.2020.117383
12

L. Kang, W. Pan, J. Zhang, W. Wang, C. Tang, A review on ammonia blends combustion for industrial applications, Fuel, 332 (2023) 126150.

10.1016/j.fuel.2022.126150
13

Y. Fu, Y. Ju, J. Wei, A review on combustion characteristics of ammonia as a carbon-free fuel, Front. Energy Res., 9 (2021) 760356.

10.3389/fenrg.2021.760356
14

F. Ma, L. Guo, Z. Li, X. Zeng, Z. Zheng, W. Li, F. Zhao, W. Yu, A review of current advances in ammonia combustion from the fundamentals to applications in internal combustion engines, Energies, 16 (2023) 6304.

10.3390/en16176304
15

H. Kobayashi, A. Hayakawa, K.D.K.A. Somarathne, E.C. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst., 37 (2019) 109-133.

10.1016/j.proci.2018.09.029
16

T. Ito, H. Ishii, J. Zhang, S. Ishihara, T. Suda, New technology of the ammonia co-firing with pulverized coal to reduce the NOx emission, Proceedings of the 2019 AIChE Annual Meeting, (2019).

17

S. Gubbi, R. Cole, B. Emerson, D. Noble, R. Steele, W. Sun, T. Lieuwen, Evaluation of minimum NOx emission from ammonia combustion, J. Eng. Gas Turbines Power, 146 (2024) 031023.

10.1115/1.4064219
18

Q. Lin, W. Sun, H. Li, Y. Liu, Y. Chen, C. Liu, Y. Jiang, Y. Cheng, N. Ma, H. Ya, L. Chen, S. Fang, H. Feng, G.-N. Luo, J. Li, K. Xiang, J. Cong, C. Cheng, Experimental study on ammonia co-firing with coal for carbon reduction in the boiler of a 300-MW coal-fired power station, Engineering, 40 (2024) 247-259.

10.1016/j.eng.2024.06.003
19

Y. Xie, J. Yan, J. Li, H. Wang, Experimental study of combustion characteristics and ash-related issues of ammonia co-firing with high alkali pulverized coal in a 4 MW boiler, Proc. Combust. Inst., 39 (2024) 1234-1245.

20

J. Zhang, T. Ito, H. Ishii, S. Ishihara, T. Fujimori, Numerical investigation on ammonia co-firing in a pulverized coal combustion facility: Effect of ammonia co-firing ratio, Fuel, 267 (2020) 117166.

10.1016/j.fuel.2020.117166
21

M. Xu, Y. Wang, Z. Zhang, L. Zhang, Y. Liu, Mitigating CO₂ emission in pulverized coal-fired power plant via co-firing ammonia: A simulation study of flue gas streams and exergy efficiency, Energy Convers. Manag., 257 (2022) 115439.

10.1016/j.enconman.2022.115328
22

Ishihara, Sakiko, Juwei Zhang, and Takamasa Ito, Numerical calculation with detailed chemistry on ammonia co-firing in a coal-fired boiler: Effect of ammonia co-firing ratio on NO emissions, Fuel, 274 (2020) 117742.

10.1016/j.fuel.2020.117742
23

S. Kim, H. Kwak, W. Yang, Evaluation of effects of ammonia co-firing on the thermal performances of supercritical pulverized coal and circulating fluidized bed boilers, Energy Convers. Manag., 276 (2022) 116528.

10.1016/j.enconman.2022.116528
24

Y. Wang, Y. He, W. Weng, Z. Wang, Numerical simulation of ammonia combustion with coal in a 135 MW tangentially fired boiler, Fuel, 370 (2024) 128625.

10.1016/j.fuel.2024.131831
25

S. Kim, T. Chae, Y. Lee, W. Yang, S. Hong, Performance evaluation of a novel thermal power plant process with low-temperature selective catalytic reduction, Energies, 13 (2020) 5558.

10.3390/en13215558
26

Neerputh, Rahendra Laljith. Development of appropriate steam turbine models in Flownex, Master Thesis, University of Cape Town, 2014.

27

G. Zhang, J. Zheng, Y. Yang, W. Liu, Thermodynamic performance simulation and concise formulas for triple-pressure reheat HRSG of gas-steam combined cycle under off-design condition, Energy Convers. Manag., 122 (2016) 372-385.

10.1016/j.enconman.2016.05.088
28

S. Zhao, Y. Zhao, Y. Han, C. An, J. Wei, Y. Yao, Prevention of stack corrosion under wet flue gas desulfurization conditions in a coal-fired power plant: performance analysis and comparative study, Environ. Syst. Res., 5 (2016) 21.

10.1186/s40068-016-0072-3
29

W. Zhao, Y. Wang, Y. Wang, C. Liu, Y. Liu, Effect of gas-liquid contact intensification on heat and mass transfer in deflector and rod bank desulfurization spray tower, Processes, 10 (2022) 1234.

30

I.N. Suamir, I.N.G. Baliarta, M.E. Arsana, I.P. Sastra Negara, Condenser-evaporator approach temperatures and their influences on energy performance of water-cooled chillers, Proc. 14th Int. Conf. Qual. Res. QIR, (2015).

31

F. Alsouda, N.S. Bennett, S.C. Saha, F. Salehi, M.S. Islam, Vapor compression cycle: A state-of-the-art review on cycle improvements, water and other natural refrigerants, Clean Technol., 5 (2023) 584-608.

10.3390/cleantechnol5020030
Information
  • Publisher :The Korean Society of Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of the Korean Society of Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 30
  • No :1
  • Pages :67-79
  • Received Date : 2025-01-14
  • Revised Date : 2025-02-19
  • Accepted Date : 2025-03-11