All Issue

2024 Vol.29, Issue 3 Preview Page

Research Article

30 September 2024. pp. 19-30
Abstract
References
1

Y.H. Teoh, H.G. How, T.D. Le, H.T. Nguyen, D.L. Loo, T. Rashid, F. Sher, A review on production and implementation of hydrogen as a green fuel in internal combustion engines, Fuel 333 (2023) 126525.

10.1016/j.fuel.2022.126525
2

Z. Stępień, A comprehensive overview of hydrogen-fueled internal combustion engines: Achievements and future challenges, Energies 14 (2021) 6504.

10.3390/en14206504
3

M. Zhang, Z. An, L. Wang, X. Wei, B. Jianayihan, J. Wang, Z. Huang, H. tan, The regulation effect of methane and hydrogen on the emission characteristics of ammonia/air combustion in a model combustor, Int. J. Hydrogen Energy 46 (2021) 21013-21025.

10.1016/j.ijhydene.2021.03.210
4

E.S Jin, K.M Lee, Numerical study on the NH3/CH4 symmetric premixed counterflow flames - PartⅠcharacteristics of extinction behavior, Trans. Korean Hydro. New Energy Soc. 34 (2023) 47-58.

10.7316/KHNES.2023.34.1.47
5

J.S. Kim, K.M. Lee, Numerical study on the NH3/ CH4 symmetric premixed counterflow flames Part II: Investigation of flame structure and reaction path, Journal of Hydrogen and New Energy 34 (2023) 748-757.

10.7316/JHNE.2023.34.6.748
6

A. Katoch, T.F. Guiberti, D.V de Campos, D.A. Lacoste, Dual-fuel, dual-swirl burner for the mitigation of thermoacoustic instabilities in turbulent ammonia-hydrogen flames, Combust. Flame 246 (2022) 112392.

10.1016/j.combustflame.2022.112392
7

D.E. Thomas, K.P. Shrestha, F. Mauss, W.F. Northrop, Extinction and NO formation of ammonia- hydrogen and air non-premixed counterflow flames, Proc. Combust. Inst. 39 (2023) 1803-1812.

10.1016/j.proci.2022.08.067
8

J. Otomo, M. Koshi, T. Mitsumori, H. Iwasaki, K. Yamada, Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion, Int. J. Hydrogen Energy 43 (2018) 3004-3014.

10.1016/j.ijhydene.2017.12.066
9

J.W. Park, N.S. Kim, Y.T. Guahk, H.K. Lee, M.J. Lee, S.K Im, Flame stability and emission characteristics of non-premixed ammonia cracking gas/air combustion in a tangential injection burner, J. Korean Soc. Combust. 28 (2023) 36-42.

10.15231/jksc.2023.28.4.036
10

M. Rieth, A. Gruber, J.H. Chen, A direct numerical simulation study on NO and N2O formation in turbulent premixed ammonia/hydrogen/nitrogen- air flames, Proc. Combust. Inst. 39 (2023) 2279-2288.

10.1016/j.proci.2022.07.266
11

M. Ditaranto, I. Saanum, J. Larfeldt, Experimental study on high pressure combustion of decomposed ammonia: How can ammonia be best used in a gas turbine, Turbo Expo: Power for Land, Sea, and Air 84959. American Society of Mechanical Engineers, 2021.

10.1115/GT2021-60057
12

C. Netzer, A. Ahmed, A. Gruber, T. Løvås, Curvature effects on NO formation in wrinkled laminar ammonia/hydrogen/ nitrogen-air premixed flames, Combust. Flame 232 (2021), 111520.

10.1016/j.combustflame.2021.111520
13

B. Mei, J. Zhang, X. Shi, Z. Xi, Y. Li, Enhancement of ammonia combustion with partial fuel cracking strategy: Laminar flame propagation and kinetic modeling investigation of NH3/H2/N2/air mixtures up to 10 atm, Combust. Flame 231 (2021) 111472.

10.1016/j.combustflame.2021.111472
14

M. Asif, S.S. Bibi, S. Ahmed, M. Irshad, M.S. Hussain, H. Zeb, M.K. Khan, J.H. Kim, Recent advances in green hydrogen production, storage and commercial-scale use via catalytic ammonia cracking, Chem. Eng. J. 473 (2023) 145381.

10.1016/j.cej.2023.145381
15

N.N. Shohdy, M. Alicherif, D.A. Lacoste, Transfer functions of ammonia and partly cracked ammonia swirl flames, Energies 16 (2023) 1323.

10.3390/en16031323
16

S. Wiseman, M. Rieth, A. Gruber, J.R. Dawson, J.H. Chen, A comparison of the blow-out behavior of turbulent premixed ammonia/hydrogen/nitrogen-air and methane-air flames, Proc. Combust. Inst. 38 (2021) 2869-2876.

10.1016/j.proci.2020.07.011
17

Y. Jiang, A. Gruber, K. Seshadri, F. Williams, An updated short chemical‐kinetic nitrogen mechanism for carbon‐free combustion applications, Int. J. Energy Res. 44 (2020) 795-810.

10.1002/er.4891
18

M. Richter, R. Schulthesis, J.R. Dawson, A. Gruber, R.S. Barlow, A. Dreizler, D. Geyer, Extinction strain rates of premixed ammonia/hydrogen/nitrogen-air counterflow flames, Proc. Combust. Inst. 39 (2023) 2027-2035.

10.1016/j.proci.2022.09.011
19

T. Poinsot, D. Veynante, Theoretical and numerical combustion, R.T. Edwards, 2001.

20

A.E. Lutz, R.J. Kee, J.F. Grcar, F.M. Rupley, OPPDIF: A Fortran program for computing opposed-flow diffusion flames. No. SAND-96-8243. Sandia National Lab.(SNL-CA), Livermore, CA (United States), 1997.

10.2172/568983
21

F.A. William, S. Kalyanasundaram, R.J. Cattolica, San Diego mech, Available at: <https://web.eng. ucsd.edu/mae/groups/ combustion/mechanism.html>, 2012.

22

E.C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, H. Kobayashi, Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames, Combust. Flame 187 (2018) 185-198.

10.1016/j.combustflame.2017.09.002
23

J. Otomo, M. Koshi, T. Mitsumori, H. Iwasaki, K Yamada, Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion, Int. J. Hydrogen Energy 43 (2018) 3004-3014.

10.1016/j.ijhydene.2017.12.066
24

K.P. Shrestha, L. Seidel, T. Zeuch, F. Mauss, Detailed kinetic mechanism for the oxidation of ammonia including the formation and reduction of nitrogen oxides, Energy Fuels 32 (2018) 10202- 10217.

10.1021/acs.energyfuels.8b01056
25

X. Han, M.L. Lavadera, A.A. Konnov, An experimental and kinetic modeling study on the laminar burning velocity of NH3+N2O+air flames, Combust. Flame 228 (2021) 13-28.

10.1016/j.combustflame.2021.01.027
26

S.H. Chung, J.S. Kim, C.K. Law, Extinction of interacting premixed flames: Theory and experimental comparisons, Symp. (Int.) Combust. 21 (1988) 1845-1851.

10.1016/S0082-0784(88)80419-3
27

C.K. Law, Dynamics of stretched flames, Symp. (Int.) Combust. 22 (1989) 1381-1402.

10.1016/S0082-0784(89)80149-3
28

A. Alfazazi, E. Es-sebbar, X. Zhang, B. Dally, M. Abdullah, M. Younes, S.M. Sarathy, Counterflow flame extinction of ammonia and its blends with hydrogen and C1-C3 hydrocarbons, Appl. Energy Combust. Sci. 12 (2022) 100099.

10.1016/j.jaecs.2022.100099
29

H. Xiao, S. Lai, A.V. Medina, J. Li, J. Liu, H. Fu, Study on counterflow premixed flames using high concentration ammonia mixed with methane, Fuel 275 (2020) 117902.

10.1016/j.fuel.2020.117902
Information
  • Publisher :The Korean Society of Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of the Korean Society of Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 29
  • No :3
  • Pages :19-30
  • Received Date : 2024-07-17
  • Revised Date : 2024-08-21
  • Accepted Date : 2024-08-23