Research Article
Y.H. Teoh, H.G. How, T.D. Le, H.T. Nguyen, D.L. Loo, T. Rashid, F. Sher, A review on production and implementation of hydrogen as a green fuel in internal combustion engines, Fuel 333 (2023) 126525.
10.1016/j.fuel.2022.126525Z. Stępień, A comprehensive overview of hydrogen-fueled internal combustion engines: Achievements and future challenges, Energies 14 (2021) 6504.
10.3390/en14206504M. Zhang, Z. An, L. Wang, X. Wei, B. Jianayihan, J. Wang, Z. Huang, H. tan, The regulation effect of methane and hydrogen on the emission characteristics of ammonia/air combustion in a model combustor, Int. J. Hydrogen Energy 46 (2021) 21013-21025.
10.1016/j.ijhydene.2021.03.210E.S Jin, K.M Lee, Numerical study on the NH3/CH4 symmetric premixed counterflow flames - PartⅠcharacteristics of extinction behavior, Trans. Korean Hydro. New Energy Soc. 34 (2023) 47-58.
10.7316/KHNES.2023.34.1.47J.S. Kim, K.M. Lee, Numerical study on the NH3/ CH4 symmetric premixed counterflow flames Part II: Investigation of flame structure and reaction path, Journal of Hydrogen and New Energy 34 (2023) 748-757.
10.7316/JHNE.2023.34.6.748A. Katoch, T.F. Guiberti, D.V de Campos, D.A. Lacoste, Dual-fuel, dual-swirl burner for the mitigation of thermoacoustic instabilities in turbulent ammonia-hydrogen flames, Combust. Flame 246 (2022) 112392.
10.1016/j.combustflame.2022.112392D.E. Thomas, K.P. Shrestha, F. Mauss, W.F. Northrop, Extinction and NO formation of ammonia- hydrogen and air non-premixed counterflow flames, Proc. Combust. Inst. 39 (2023) 1803-1812.
10.1016/j.proci.2022.08.067J. Otomo, M. Koshi, T. Mitsumori, H. Iwasaki, K. Yamada, Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion, Int. J. Hydrogen Energy 43 (2018) 3004-3014.
10.1016/j.ijhydene.2017.12.066J.W. Park, N.S. Kim, Y.T. Guahk, H.K. Lee, M.J. Lee, S.K Im, Flame stability and emission characteristics of non-premixed ammonia cracking gas/air combustion in a tangential injection burner, J. Korean Soc. Combust. 28 (2023) 36-42.
10.15231/jksc.2023.28.4.036M. Rieth, A. Gruber, J.H. Chen, A direct numerical simulation study on NO and N2O formation in turbulent premixed ammonia/hydrogen/nitrogen- air flames, Proc. Combust. Inst. 39 (2023) 2279-2288.
10.1016/j.proci.2022.07.266M. Ditaranto, I. Saanum, J. Larfeldt, Experimental study on high pressure combustion of decomposed ammonia: How can ammonia be best used in a gas turbine, Turbo Expo: Power for Land, Sea, and Air 84959. American Society of Mechanical Engineers, 2021.
10.1115/GT2021-60057C. Netzer, A. Ahmed, A. Gruber, T. Løvås, Curvature effects on NO formation in wrinkled laminar ammonia/hydrogen/ nitrogen-air premixed flames, Combust. Flame 232 (2021), 111520.
10.1016/j.combustflame.2021.111520B. Mei, J. Zhang, X. Shi, Z. Xi, Y. Li, Enhancement of ammonia combustion with partial fuel cracking strategy: Laminar flame propagation and kinetic modeling investigation of NH3/H2/N2/air mixtures up to 10 atm, Combust. Flame 231 (2021) 111472.
10.1016/j.combustflame.2021.111472M. Asif, S.S. Bibi, S. Ahmed, M. Irshad, M.S. Hussain, H. Zeb, M.K. Khan, J.H. Kim, Recent advances in green hydrogen production, storage and commercial-scale use via catalytic ammonia cracking, Chem. Eng. J. 473 (2023) 145381.
10.1016/j.cej.2023.145381N.N. Shohdy, M. Alicherif, D.A. Lacoste, Transfer functions of ammonia and partly cracked ammonia swirl flames, Energies 16 (2023) 1323.
10.3390/en16031323S. Wiseman, M. Rieth, A. Gruber, J.R. Dawson, J.H. Chen, A comparison of the blow-out behavior of turbulent premixed ammonia/hydrogen/nitrogen-air and methane-air flames, Proc. Combust. Inst. 38 (2021) 2869-2876.
10.1016/j.proci.2020.07.011Y. Jiang, A. Gruber, K. Seshadri, F. Williams, An updated short chemical‐kinetic nitrogen mechanism for carbon‐free combustion applications, Int. J. Energy Res. 44 (2020) 795-810.
10.1002/er.4891M. Richter, R. Schulthesis, J.R. Dawson, A. Gruber, R.S. Barlow, A. Dreizler, D. Geyer, Extinction strain rates of premixed ammonia/hydrogen/nitrogen-air counterflow flames, Proc. Combust. Inst. 39 (2023) 2027-2035.
10.1016/j.proci.2022.09.011A.E. Lutz, R.J. Kee, J.F. Grcar, F.M. Rupley, OPPDIF: A Fortran program for computing opposed-flow diffusion flames. No. SAND-96-8243. Sandia National Lab.(SNL-CA), Livermore, CA (United States), 1997.
10.2172/568983F.A. William, S. Kalyanasundaram, R.J. Cattolica, San Diego mech, Available at: <https://web.eng. ucsd.edu/mae/groups/ combustion/mechanism.html>, 2012.
E.C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, H. Kobayashi, Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames, Combust. Flame 187 (2018) 185-198.
10.1016/j.combustflame.2017.09.002J. Otomo, M. Koshi, T. Mitsumori, H. Iwasaki, K Yamada, Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion, Int. J. Hydrogen Energy 43 (2018) 3004-3014.
10.1016/j.ijhydene.2017.12.066K.P. Shrestha, L. Seidel, T. Zeuch, F. Mauss, Detailed kinetic mechanism for the oxidation of ammonia including the formation and reduction of nitrogen oxides, Energy Fuels 32 (2018) 10202- 10217.
10.1021/acs.energyfuels.8b01056X. Han, M.L. Lavadera, A.A. Konnov, An experimental and kinetic modeling study on the laminar burning velocity of NH3+N2O+air flames, Combust. Flame 228 (2021) 13-28.
10.1016/j.combustflame.2021.01.027S.H. Chung, J.S. Kim, C.K. Law, Extinction of interacting premixed flames: Theory and experimental comparisons, Symp. (Int.) Combust. 21 (1988) 1845-1851.
10.1016/S0082-0784(88)80419-3C.K. Law, Dynamics of stretched flames, Symp. (Int.) Combust. 22 (1989) 1381-1402.
10.1016/S0082-0784(89)80149-3- Publisher :The Korean Society of Combustion
- Publisher(Ko) :한국연소학회
- Journal Title :Journal of the Korean Society of Combustion
- Journal Title(Ko) :한국연소학회지
- Volume : 29
- No :3
- Pages :19-30
- Received Date : 2024-07-17
- Revised Date : 2024-08-21
- Accepted Date : 2024-08-23
- DOI :https://doi.org/10.15231/jksc.2024.29.3.019