Research Article
IEA, World energy outlook 2019, Available at: <https://www.iea.org/reports/world-energy-outlook-2019>, 2019.
Revolutionary Mazda Skyactiv-X engine details confirmed as sales start, Available at: <https://www. Mazda-Press.com/eu/News/2019/Revolutionary-Mazda-Skyactiv-x-Engine-Details-Confirmed-as-Sales-Start>, 2019.
J. Dernotte, J. Dec, C. Ji, Efficiency improvement of boosted low-temperature gasoline combustion engines (LTGC) using a double direct-injection strategy, SAE Technical Paper (2017) 2017-01-0728.
10.4271/2017-01-0728B. Peterson, D.L. Reuss, V. Sick, On the ignition and flame development in a spray-guided direct-injection spark-ignition engine, Combust. Flame 161 (2014) 240-255.
10.1016/j.combustflame.2013.08.019M. Stuhldreher, J. Kargul, D. Barba, J. McDonald, S. Bohac, P. Dekraker, A. Moskalik, Benchmarking a 2016 Honda Civic 1.5-Liter L15B7 turbocharged engine and evaluating the future efficiency potential of turbocharged engines, SAE Int. J. Engines 11(6) (2018) 1273-1305.
10.4271/2018-01-0319F. Zhao, T.N. Asmus, D.N. Assanis, J.E. Dec, J.A. Eng, P.M. Najt, Homogeneous charge compression ignition (HCCI) engines, SAE Technical Paper (2003) PT-94.
Q. Fan, Y. Qi, Z. Wang, Effect of octane number and thermodynamic conditions on combustion process of spark ignition to compression ignition through a rapid compression machine, Fuel 262 (2020) 116480.
10.1016/j.fuel.2019.116480N. Kim, D. Vuilleumier, E. Singh, M. Sjöberg, Octane requirements of lean mixed-mode combustion in a direct-injection spark-ignition engine, Energy Fuels 36(17) (2022) 10096-10109.
10.1021/acs.energyfuels.2c01794D. Lopez-Pintor, J. Dec, S. Cho, Performance of octane index in LTGC engines from beyond MON to beyond RON, Fuel 341 (2023) 127625.
10.1016/j.fuel.2023.127625G.T. Kalghatgi, Developments in internal combustion engines and implications for combustion science and future transport fuels, Proc. Combust. Inst. 35(1) (2015) 101-115.
10.1016/j.proci.2014.10.002J. P. Szybist, D.A. Splitter, Impact of engine pressure-temperature trajectory on autoignition for varying fuel properties, Appl. Energy Combust. Sci. 1-4 (2020) 100003.
10.1016/j.jaecs.2020.100003H. Persson, Ö. Andersson, R. Egnell, Fuel effects on flame lift-off under diesel conditions, Combust. Flame 158(1) (2011) 91-97.
10.1016/j.combustflame.2010.07.020J.J. López, J.M. García-Oliver, A. García, V. Domenech, Gasoline effects on spray characteristics, mixing and auto-ignition processes in a CI engine under partially premixed combustion conditions, Appl. Therm. Eng. 70(1) (2014) 996-1006.
10.1016/j.applthermaleng.2014.06.027W.Q. Han, C.D. Yao, Research on high cetane and high octane number fuels and the mechanism for their common oxidation and auto-ignition, Fuel 150 (2015) 29-40.
10.1016/j.fuel.2015.01.090J.V. Pastor, J.M. García-Oliver, J.J. López, W. Vera-Tudela, An experimental study of the effects of fuel properties on reactive spray evolution using primary reference fuels, Fuel 163 (2016) 260-270.
10.1016/j.fuel.2015.09.064G. Zhai, S. Xing, A. Srna, A. Wehrfritz, S. Kook, E.R. Hawkes, Q.N. Chan, Ignition and flame stabilisation of primary reference fuel sprays at engine-relevant conditions, Combust. Flame 233 (2021) 111620.
10.1016/j.combustflame.2021.111620S. Skeen, J. Manin, L.M. Pickett, Visualization of ignition processes in high-pressure sprays with multiple injections of n-dodecane, SAE Int. J. Engines 8(2) (2015) 696-715.
10.4271/2015-01-0799S.A. Skeen, J. Manin, L.M. Pickett, Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames, Proc. Combust. Inst. 35(3) (2015) 3167-3174.
10.1016/j.proci.2014.06.040H.S. Sim, N. Maes, L. Weiss, L.M. Pic-kett, S.A. Skeen, Detailed measurements of transient two- stage ignition and combustion processes in high- pressure spray flames using simultaneous high- speed formaldehyde PLIF and schlieren imaging, Proc. Combust. Inst. 38(4) (2021) 5713-5721.
10.1016/j.proci.2020.09.026H.S. Sim, N. Maes, L.M. Pickett, S.A. Skeen, J. Manin, High-speed formaldehyde planar laser-induced fluorescence and schlieren to assess influences of injection pressure and oxygen concentration on Spray A flames, Combust. Flame 253 (2023) 112806.
10.1016/j.combustflame.2023.112806J.E. Dec, A conceptual model of DI diesel combustion based on laser-sheet imaging, SAE Trans. 106 (1997) 1319-1348.
10.4271/970873M.P.B. Musculus, P.C. Miles, L.M. Pickett, Conceptual models for partially premixed low-temperature diesel combustion, Prog. Energy Combust. Sci. 39(2-3) (2013) 246-283.
10.1016/j.pecs.2012.09.001J. Park, J. Hwang, J. Manin, H.S. Sim, Synchronized 100-kHz planar laser induced fluorescence and schlieren imaging of high-pressure spray flames, AIAA SCITECH 2024 Forum (2024) 2779.
10.2514/6.2024-2779J. O'Connor, M. Musculus, Optical investigation of the reduction of unburned hydrocarbons using close-coupled post injections at LTC conditions in a heavy-duty diesel engine, SAE Int. J. Engines 6 (2013) 379-399.
10.4271/2013-01-0910H. Joel, K. Smyth, Laser-induced fluorescence measurements of formaldehyde in a methane/air diffusion flame, Chem. Phys. Lett. 202(3-4) (1993) 196-202.
10.1016/0009-2614(93)85265-PJ. Cisek, S. Leśniak, A. Borowski, W. Przybylski, V. Mokretskyy, Visualisation and thermovision of fuel combustion affecting heat release to reduce NOx and PM diesel engine emissions, Energies 15(13) (2022) 4882.
10.3390/en15134882A. Taqizadeh, O. Jahanian, S. I. P. Kani, Effects of equivalence and fuel ratios on combustion characteristics of an RCCI engine fueled with methane/ n-heptane blend, J. Therm. Anal. Calorim. 139 (2020) 2541-2551.
10.1007/s10973-019-08669-9- Publisher :The Korean Society of Combustion
- Publisher(Ko) :한국연소학회
- Journal Title :Journal of the Korean Society of Combustion
- Journal Title(Ko) :한국연소학회지
- Volume : 29
- No :3
- Pages :11-18
- Received Date : 2024-07-19
- Revised Date : 2024-08-21
- Accepted Date : 2024-08-23
- DOI :https://doi.org/10.15231/jksc.2024.29.3.011