All Issue

2021 Vol.26, Issue 2 Preview Page

Research Article

June 2021. pp. 23-29
Abstract
References
1
M. Sućeska, S. Matečić Mušanić, I. Fiamengo, S. Bakija, A. Bakić, J. Kodvanj, Study of mechanical properties of naturally aged double base rocket propellants, Cent. Eur. J. Energ. Mat., 7 (2010) 47-60.
2
R. Ganev, I. Glavchev, IR spectroscopy characterization of single-base propellants during their natural aging, J. Tech. Phy., 45 (2004) 301-308.
3
O.B. Nazarenko, Y.A. Amelkovich, A.I. Sechin, Characterization of aluminium nanopowders after long-term storage, Appl. Surf. Sci., 321 (2014) 475-80. 10.1016/j.apsusc.2014.10.034
4
W. Sanborn, D. Boyd, A. Quebral, The Accelerated Aging of the Pyrotechnic Materials THPP and ZPP, In 44th AIAA, ASME, SAE, and ASEE Joint Propulsion Conference and Exibition, 2008, 4720. 10.2514/6.2008-4720
5
Y. Kim, A. Ambekar, J.J. Yoh, A Hot Spot Based Shock to Detonation Transition Simulation using Multi-Scale Approach Part A: Extraction of Chemical Kinetics of Energetic Material, J. Korean Soc. Combust., 23 (2018) 23-28. 10.15231/jksc.2018.23.4.023
6
J. Oh, J.J. Yoh, Critical changes in the ignition and combustion characteristics of aged titanium-based initiators, Combust. Flame, 221 (2020) 74-85. 10.1016/j.combustflame.2020.07.037
7
J. Oh, J.J. Yoh, Insights into aging mechanism of Ti-metal based pyrotechnics and changes in thermo- kinetic characteristics, Symposium (International) on Combustion, 38 (2021) 4441-4449. 10.1016/j.proci.2020.08.040
8
D.N. Sorensen, A.P. Quebral, E.E. Baroody, W.B. Sanborn, Investigation of the thermal degradation of the aged pyrotechnic titanium hydride/potassium pechlorate, J. Therm. Anal. Calorim., 85 (2006) 151-156. 10.1007/s10973-005-7365-5
9
D. Trache, K. Khimeche, Study on the influence of ageing on thermal decomposition of double-base propellants and prediction of their in-use time, Fire Mater., 37 (2013) 328-336. 10.1002/fam.2138
10
M. Kivity, G. Hartman, A. Achlama, Aging of HTPB propellant, In 41st AIAA, ASME, SAE, and ASEE Joint Propulsion Conference and Exibition, 2005, 3802. 10.2514/6.2005-3802PMC2270720
11
J. Oh, Y. Kim, J.J. Yoh, The Analysis on the Effects of Hygrothermal Aging to THPP Using DSC and XPS, J. Korean Soc. Propul. Eng., 23 (2019) 79-92. 10.6108/KSPE.2019.23.1.079
12
L.L. Rouch, J.N. Maycock, Explosive and pyrotechnic aging demonstration, NASA-CR-2622, 1976.
13
C.S.Jr. Gorzynski, J.N. Maycock, Explosives and Pyrotechnic Propellants for Use in Long-Term Deep Space Missions, J. Spacecr. Rockets, 11 (1974) 211-212. 10.2514/3.62044
14
M.A. Bohn, Prediction of In-Service Time Period of Three Differently Stabilized Single Base Propellants, Propell. Explos. Pyrot., 34 (2009) 252-266. 10.1002/prep.200900007
15
J.W. Lee, T. Kim, S.U. Ryu, K. Choi, G.H. Paik, B. Ryu, T. Park, Y.S. Won, Study on the Aging Mechanism of Boron Potassium Nitrate (BKNO3) for Sustainable Efficiency in Pyrotechnic Mechanical Devices, Sci. Rep., 8 (2018) 11745. 10.1038/s41598-018-29412-830082876PMC6078969
16
L.J. Bement, H.A. Multhaup, Determining functional reliability of pyrotechnic mechanical devices, AIAA J., 37 (1999) 357-363. 10.2514/3.14173
17
J.S. Lee, L.K. Lin, C.H. Lin, P.J. Ch'en, C.W. Huang, S.S. Chang, A study of zirconium/potassium perchlorate primer mixtures, Thermochim. Acta, 173 (1990) 211-218. 10.1016/0040-6031(90)80606-Y
18
C. Hohmann, B.Jr. Tipton, M. Dutton, Propellant for the NASA standard Initiator, NASA/TP-2000- 210186, 2000.
19
B. Berger, Parameters influencing the pyrotechnic reaction, Propell. Explos. Pyrot., 30 (2005) 27-35. 10.1002/prep.200400082
20
Z.U.D. Babar, A.Q. Malik, Accelerated ageing of SR-562 pyrotechnic composition and investigation of its thermo kinetic parameters, Fire Mater., 41 (2017) 131-141. 10.1002/fam.2371
21
S.D. Brown, E.L. Charsley, S.J. Goodall, P.G. Laye, J.J. Rooney, T.T. Griffiths, Studies on the ageing of a magnesium-potassium nitrate pyrotechnic composition using isothermal heat flow calorimetry and thermal analysis techniques, Thermochim. Acta, 401 (2003) 53-61. 10.1016/S0040-6031(03)00055-8
22
J. Lee, K. Choi, S.U. Ryu, G.H., Ahn, J.G. Paik, B. Ryu, Y.S. Won, Aging Mechanism of Zirconium Potassium Perchlorate Charge in Pyrotechnic Mechanical Devices, Nanosci. Nanotech. Let., 10 (2018) 735-740. 10.1166/nnl.2018.2660
23
P. Kadiresh, B. Sridhar, Experimental study on ballistic behaviour of an aluminised AP/HTPB propellant during accelerated aging, J. Therm. Anal. Calorim., 100 (2009) 331-335. 10.1007/s10973-009-0569-3
24
L. Wang, X. Shi, W. Wang, The influences of combinative effect of temperature and humidity on the thermal stability of pyrotechnic mixtures containing strontium nitrate as oxidizer, J. Therm. Anal. Calorim., 117 (2014) 985-992. 10.1007/s10973-014-3713-7
25
S. Guo, Q. Wang, X. Liao, Z. Wang, Study on the influence of moisture content on thermal stability of propellant, J. Hazard. Mater., 168 (2009) 536-541. 10.1016/j.jhazmat.2009.02.07319285801
26
I.M. Tuukkanen, S.D. Brown, E.L. Charsley, S.J. Goodall, P.G. Laye. J.J. Rooney, T.T. Griffiths, H. Lemmetyinen, A study of the influence of the fuel to oxidant ratio on the ageing of magnesium- strontium nitrate pyrotechnic compositions using isothermal microcalorimetry and thermal analysis techniques, Thermochim. Acta, 426 (2005) 115-121. 10.1016/j.tca.2004.07.011
27
J. Oh, A. Ambekar, J.J. Yoh, The hygrothermal aging effects of titanium hydride potassium perchlorate for pyrotechnic combustion. Thermochim. Acta, 665 (2018) 102-110. 10.1016/j.tca.2018.05.019
28
B.A. McDonald, Study of the effects of aging under humidity control on the thermal decomposition of NC/NG/BTTN/RDX propellants, Propell. Explos. Pyrot., 36 (2011) 576-583. 10.1002/prep.200900094
29
F. Bart, M.J. Guitteta, M. Henriot, N. Thromata, M. Gautier, J.P. Duraud, Surface analysis of wide gap insulators with XPS, J. Electron. Spectrosc. Relat. Phenom., 69 (1994) 245-258. 10.1016/0368-2048(94)02191-2
30
The AIAA Ordnance Committee. Standard: Criteria for Explosive Systems and Devices on Space and Launch Vehicles. AIAA S-113-2005, 2005.
31
S. Vyazovkin, K. Chrissafis, M.L.D. Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, J.J. Suñol, ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim. Acta, 590 (2014) 1-23. 10.1016/j.tca.2014.05.036
32
L. Yang, Effects of Fuel Particle Size and Impurity on Solid-to-Solid Pyrotechnic Reaction Rate, In 47th AIAA, ASME, SAE, ASEE Joint Propulsion Conference & Exhibit, 2011, 5581. 10.2514/6.2011-5581
33
S. Matečić Mušanić, I. Fiamengo Houra, M. SućeSkA, Applicability of non-isothermal DSC and Ozawa method for studying kinetics of double base propellant decomposition, Cent. Eur. J. Energ. Mat., 7 (2010) 233-251.
34
Akts, A. G. http://www.akts.com. AKTS-Thermokinetics software.
35
S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta, 520 (2011) 1-19. 10.1016/j.tca.2011.03.034
36
H.L. Friedman, Kinetics of thermal degradation of char‐forming plastics from thermogravimetry. Application to a phenolic plastic, J. Polym. Sci., Polym. Part C: Polym. Symp., 6 (1964) 183-195. 10.1002/polc.5070060121
37
T. Ozawa, A new method of analyzing thermogravimetric data, Bull. Chem. Soc. Jpn., 38 (1965) 1881-1886. 10.1246/bcsj.38.1881
38
Z. Cheng, W. Wu, P. Ji, X. Zhou, R. Liu, J. Cai, Applicability of Fraser-Suzuki function in kinetic analysis of DAEM processes and lignocellulosic biomass pyrolysis processes, J. Therm. Anal. Calorim., 119 (2015) 1429-1428. 10.1007/s10973-014-4215-3
39
N.J.L. Agreda, Kinetic Analysis of Recovery, Recrystallization, and Phase Precipitation in an Al-Fe-Si Alloy Using JMAEK and Sesták-Berggren Models. Metall. Mater. Trans. B, 46 (2015) 1376-1399. 10.1007/s11663-015-0309-y
40
M.A. Bohn, Prediction of equilvalent time-temperature loads for accelerated ageing to simulate preset in-stroage ageing and time-temperature profiles loads, Proceeding of the 40th international annual conference of ICT, 2009, 1-28.
41
M. Brochu, B.D. Gauntt, L. Boyer, R.E. Loehman, Pressureless reactive sintering of ZrB2 ceramic, J. Eur. Ceram. Soc., 29 (2009) 1493-1499. 10.1016/j.jeurceramsoc.2008.08.032
42
K.T. Lu, C.C. Yang, Thermal Analysis Studies on the Slow‐Propagation Tungsten Type Delay Composition System, Propell. Explos. Pyrot., 33 (2008) 403-410. 10.1002/prep.200700287
43
A. Ambekar, J.J. Yoh, Chemical kinetics of multi- component pyrotechnics and mechanistic deconvolution of variable activation energy, Symposium (International) on Combustion, 37 (2019) 3193-3201. 10.1016/j.proci.2018.05.142
44
M. Shamsipur, S.M. Pourmortazavi, M. Roushani, A.A. Beigi, Thermal behavior and non-isothermal kinetic studies on titanium hydride-fueled binary pyrotechnic compositions, Combust. Sci. Technol., 185 (2013) 122-133. 10.1080/00102202.2012.709564
45
M. Shamsipur, S.M. Pourmortazavi, M. Fathollahi, Kinetic parameters of binary iron/oxidant pyrolants, J. Energ. Mater., 30 (2012) 97-106. 10.1080/07370652.2010.542798
46
S.G. Hosseini, S.M. Pourmortazavi, S.S. Hajimirsadeghi, Thermal decomposition of pyrotechnic mixtures containing sucrose with either potassium chlorate or potassium perchlorate, Combust. Flame, 141 (2005) 322-326. 10.1016/j.combustflame.2005.01.002
47
A. Ambekar, J.J. Yoh, Kinetics deconvolution study of multi-component pyrotechnics, Thermochim. Acta, 667, (2018) 27-34. 10.1016/j.tca.2018.07.007
48
M. Ravanbod, H.R. Pouretedal, M.K. Amini, R. Ebadpour, Kinetic study of the thermal decomposition of potassium chlorate using the non-isothermal TG/DSC technique, Cent. Eur. J. Energ. Mat., 13 (2016) 505-525. 10.22211/cejem/64999
49
P.L. Varghese, Investigation of energy transfer in the ignition mechanism of a NASA standard initiator. NASA CR-184673, 1988.
50
C.E. Burgess, J.D. Woodyard, K.A. Rainwater, J.M. Lightfoot, B.R. Richardson, Literature review of the lifetime of DOE materials: Aging of plastic bonded explosives and the explosives and polymers contained therein. No. ANRCP-1998-12, 1998. 10.2172/290850
51
G.T. Thompson, R.B. Schwarz, G. Brown, R. DeLuca, Time-Evolution of TATB-Based Irreversible Thermal Expansion (Ratchet. Growth). Propell. Explos. Pyrot., 40 (2015) 558-565. 10.1002/prep.201400214
52
L.C. Peter, P. Douglas, P. William, Space Vehicle Mechanisms: Elements of Succesful Design (ed. Peter, L. C.), John Wiley & Sons, 1998, 247.
53
M.A. Kader, A.K. Bhowmick, Thermal ageing, degradation and swelling of acrylate rubber, fluororuber and their blends containing polyfunctional acrylates, Polym. Degrad. Stab., 79 (2003) 283-295. 10.1016/S0141-3910(02)00292-6
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 26
  • No :2
  • Pages :23-29
  • Received Date :2021. 03. 04
  • Revised Date :2021. 03. 20
  • Accepted Date : 2021. 04. 26