All Issue

2021 Vol.26, Issue 2 Preview Page

Research Article

June 2021. pp. 14-22
Abstract
References
1
Renewable energy REC trend report, https://onerec.kmos.kr/portal/rec/selectRecReport_tradePerformanceList.do?key=1971
2
Ayhan Demirbas, Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues, Prog Energy Combust Sci, 31(2) (2005) 171-192. 10.1016/j.pecs.2005.02.002
3
Z. Maa, F. Imana, P. Lua, R. Searsa, L. Kongb, A.S. Rokanuzzamanb, D.P. McCollorb, S.A. Bensonb, A comprehensive slagging and fouling prediction tool for coal-fired boilers and its validation/application, Fuel Processing Technology, 88(11-12) (2007) 1035-1043. 10.1016/j.fuproc.2007.06.025
4
M.J.C. van der Stelt, H. Gerhauser, J.H.A. Kiel, K.J. Ptasinski, Biomass upgrading by torrefaction for the production of biofuels: A review, Biomass Bioenergy, 35(9) (2011) 3748-3762. 10.1016/j.biombioe.2011.06.023
5
Y.J. Lee, J.W. Choi, J.H. Park, H. Namkung, G.S. Song, S.J. Park, D.W. Lee, J.G. Kim, C.H. Jeon, Y.C. Choi, Techno-Economical Method for the Removal of Alkali Metals from Agricultural Residue and Herbaceous Biomass and Its Effect on Slagging and Fouling Behavior, ACS Sustain Chem Eng. (2018) 13056-13065. 10.1021/acssuschemeng.8b02588
6
A. Ohliger, M. Förster, R. Kneer, Torrefaction of beechwood: A parametric study including heat of reaction and grindability, Fuel, 104 (2013) 607-613. 10.1016/j.fuel.2012.06.112
7
M. Manouchehrinejad, I. van Giesen, S. Mani, Grindability of torrefied wood chips and wood pellets, Fuel Processing Technology, 182 (2018) 45-55. 10.1016/j.fuproc.2018.10.015
8
J. Lee, S. Yu, J. Park, H. Jo, J. Park, C. Ryu, Y.G. Jeong, Reduction of unburned carbon and NOx emissions from a pulverized-wood-pellet boiler retrofitted for fuel switching from coal, Energies, (2020) 5077. 10.3390/en13195077
9
ASTM D3172 - 13, Standard Practice for Proximate Analysis of Coal and Coke, ASTM International, USA, 2013.
10
ASTM D5373-16, Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke", ASTM International, USA, 2016.
11
ASTM D5865-19, Standard Test Method for Gross Calorific Value of Coal and Coke, ASTM International, USA, 2019.
12
A.W. Coats, J.P. Redfern, Kinetic Parameter from Thermogravimetric Data, Nature, 201 (1964) 68-69. 10.1038/201068a0
13
C. Ndibe, G. Vonk, S. Yuan, J. Maier, G. Scheffknecht, Characterizing the grinding behavior of pre-treated biomass fuels for coal pulverizer application, 24th European Biomass Conference and Exhibition, 6-9 (2016), Amsterdam, The Netherlands.
14
De Soete GG., Fifteenth Symposium (international) on Combution, The Combustion Institute, Pitts-burgh, PA, (1975) 1093. 10.1016/S0082-0784(75)80374-2
15
D.K. Seo, S.S. Park, Y.T. Kim, J.H. Hwang, T.U. Yu, Study on Co-pyrolysis of Biomass/Coal using Thermo-gravimetric Analysis (TGA), Korean Soc. Mech. Eng. B. 39 (2009) 209-214.
16
D. Vamvuka, E. Kastanaki, M. Lasithiotakis, Devolatilization and combus-tion kinetics of low-rank coal blends from dynamic measurements. Ind Eng Chem Res (2003) 4732-4740. 10.1021/ie020758m
17
H. Haykiri-Acma, A.Z. Turan. S. Yaman, S. Kucukbayrak, Controlling the excess heat from oxy- combustion of coal by blending with biomass, Fuel Processing Technology, 91 (2010) 1569-1575. 10.1016/j.fuproc.2010.06.004
18
D. Carpenter, T.L. Westover, S. Czernik, W. Jablonski, Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem, (2014) 384-406. 10.1039/C3GC41631C
19
S. Yu, J. Park, M. Kim, H. Kim, C. Ryu, Y. Lee, W. Yang, Y.G. Jeong, Improving Energy Density and Grindability of Wood Pellets by Dry Torrefaction, Energy Fuels, 33 (2019) 8632-8639. 10.1021/acs.energyfuels.9b01086
20
S. Wang, G. Dai, B. Ru, Y. Zhao, X. Wang, G. Xiao, Z. Luo, Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose, Energy, 120 (2017) 864-871. 10.1016/j.energy.2016.11.135
21
Y.H. Li, H.T. Lin, K.L. Xiao, J. Lasek, Combustion behavior of coal pellets blended with Miscanthus biochar, Energy. 163 (2018) 180-190. 10.1016/j.energy.2018.08.117
22
M.V. Gil, R. García, C. Pevida, F. Rubiera, Grindability and combustion behavior of coal and torrefied biomass blends, Bioresour Technol, 191 (2015) 205-212. 10.1016/j.biortech.2015.04.11725997009
23
L. Sh, S.I. Kim, H. Lim, B.H. Lee, S.M. Kim, C.H. Jeon, Experimental Investigation into the Combustion Characteristics on the Co-firing of Biomass with Coal as a Function of Particle Size and Blending Ratio, Trans. Korean Soc. Mech. Eng. B, (2016) 31-37. 10.3795/KSME-B.2016.40.1.031
24
Ingwald Obernberger, Decentralized Biomass Combustion: State of the Art and Future Development, Biomass Bioenergy, 14 (1998) 33-56. 10.1016/S0961-9534(97)00034-2
25
R. Kurose, M. Ikeda, H. Makino, M. Kimoto, T. Miyazaki, Pulverized coal combustion characteristics of high-fuel-ratio coals, Fuel, 83 (2004) 1777-1785. 10.1016/j.fuel.2004.02.021
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 26
  • No :2
  • Pages :14-22
  • Received Date :2020. 12. 12
  • Revised Date :2020. 12. 13
  • Accepted Date : 2021. 03. 17