All Issue

2025 Vol.30, Issue 3

Technical Notes

30 September 2025. pp. 1-10
Abstract
References
1

S.P. Joo, S.U. Heo, J.Y. Heo, J.H. Hyon, Technical trend of supercavitating rocket propulsion system, J. Korean Soc. Combust., 30(1) (2025) 1-9.

10.15231/jksc.2025.30.1.001
2

T.S. Ki, D.S. Ha, J.K. Jin, H.S. Lee, H.G. Yoon, Analysis of unsteady combustion performance in solid rocket motor with pintle, J. Korean Soc. Propuls. Eng., 19(1) (2015) 68-75.

10.6108/KSPE.2015.19.1.068
3

B. Genov, D. Nedelchev, M.M. Mihovski, Y. Mirchev, Comprehensive approach for service life assessment of solid-propellant rocket motors, Int. J. NDT days, 2(4) (2019) 467-475.

4

G. Korompili, G. Mussbach, C. Riziotis, Structural health monitoring of solid rocket motors: from destructive testing to perspectives of photonic-based sensing, Instruments, 8(2) (2024) 35.

10.3390/instruments8010016
5

X. Fei, Q. Fengchen, S. Bing, F. Yuzhu, Digital twin of solid rocket motor, problem and challenge, 11th Int. Symp. Computational Intelligence and Design (ISCID), 2 (2018) 7-11.

10.1109/ISCID.2018.10103
6

A. Broer, R. Benedictus, D. Zarouchas, The need for multi-sensor data fusion in structural health monitoring of composite aircraft structures, Aerospace, 9(5) (2022) 249.

10.3390/aerospace9040183
7

H. Naseem, J. Yerra, H. Murthy, P. Ramakrishna, Ageing studies on AP/HTPB based composites solid propellants, Energetic Mater. Front., 2 (2021) 1-8.

10.1016/j.enmf.2021.02.001
8

P.J. Lee, S.H. Cho, A study on the ammunition stockpile reliability program - with focus on the function test cycle adjustment scheme -, J. Korean Soc. Combust., (2013) 1-8.

9

S.H. Hwang, B.S. Park, D.S. Kim, A study on activation energy and accelerated aging test for solid propellant, J. Korea Acad.-Ind. Coop. Soc., 23(6) (2022) 470-478.

10.5762/KAIS.2022.23.8.89
10

R.I. Caro, J.M. Bellerby, E. Kronfli, Characterization and thermal decomposition studies of a hydroxy terminated polyether (HtPe) copolymer and binder for composite rocket propellants, Imemts Bristol, (2006).

10.1615/IntJEnergeticMaterialsChemProp.v6.i3.20
11

National Aeronautics and Space Administration, Fiber optic sensing technologies (DRC-TOPS-37), NASA Technology Transfer Portal, Available at: <https://technology.nasa.gov/patent/DRC-TOPS-37>, 2025.

12

D.J. Mena, S. Pluchart, S. Mouvand, O. Broca, Rocket engine digital twin – modeling and simulation benefits, AIAA Propulsion and Energy Forum, (2019) 1-9.

13

E.H. Glaessgen, D. Stargel, The digital twin paradigm for future NASA and U.S. Air Force vehicles, (2012).

10.2514/6.2012-1818
14

A. Moghtadaei, Aircraft engine maintenance and digital twin technology in aircraft engines, J. Data Anal. Eng. Decis. Making, 3(2) (2024) 45-57.

15

A. Hartwell, F.J. Montana, W.R. Jacobs, V. Kadirkamanathan, A.R. Mills, T. Clark, Distributed digital twins for health monitoring: resource constrained aero-engine fleet management, Aeronaut. J., 128 (2021) 1556-1575.

10.1017/aer.2024.23
16

S.J. Kim, J.H. Im, S.J. Kim, M.H. Kim, J.H. Kim, Y.I. Kim, Diagnostics using first-principles based digital twin and application for gas turbine verification test, SSRN Electron. J., (2021).

10.2139/ssrn.3898486
17

J. McCrea, Commentary: Minuteman III program embraces digital sustainment tool, Air Force Nuclear Weapons Center, Available at: <https://www.afnwc.af.mil/News/Article/2733438/commentary-minuteman-iii-program-embraces-digital-sustainment-tool>, 2021.

18

S. Waterman, GBSD using digital twinning at every stage of the program lifecycle, Air & Space Forces Magazine, Available at: <https://www.airandspaceforces.com/gbsd-using-digital-twinning-at-every-stage-of-the-program-lifecycle>, 2022.

19

T. Rivord, B. Williams, Multiphase simulations of the SLS launch environment, NASA@SC22, Available at: <https://www.nas.nasa.gov/SC22/research/project11.html>, 2022.

20

J.A. Smith, R.B. Doe, Method and system for autonomous navigation and obstacle avoidance for unmanned aerial vehicles (WO2017039941A1), World Intellectual Property Organization, Available at: <https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017039941>, 2017.

21

W.A. Dick, R.A. Fiedler, M.T. Heath, Integrated simulation of solid propellant rockets, Second European Conference on Space Solid Propulsion, 2000, 1-12.

10.2514/6.2001-3949
22

W.A. Dick, R.A. Fiedler, M.T. Heath, Building Rocstar: simulation science for solid propellant rocket motors, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2006, AIAA-2006-4590.

10.2514/6.2006-4590
23

Y. Zhang, H. Qiang, X. Wang, Z. Ji, L. Ma, Health monitoring and failure prediction method of solid rocket motor based on digital twin, Int. Core J. Eng., 7(11) (2021) 101-105.

24

L. Liu, F. Zhu, J. Chen, Y. Ma, Y. Tu, A quality control method for complex product selective assembly processes, Int. J. Prod. Res., 51(18) (2013) 5437-5449.

10.1080/00207543.2013.776187
25

C. Zhuang, Z. Liu, J. Liu, H. Ma, S. Zhai, Y. Wu, Digital twin-based quality management method for the assembly process of aerospace products with the grey-markov model and apriori algorithm, Chin. J. Mech. Eng., 35(1) (2022) 105.

10.1186/s10033-022-00763-8
26

T. Nakajima, E. Sato, H. Tsuda, A. Sato, N. Kawai, Development of simultaneous measurement system for strain and AE using FBG sensors for structural health monitoring of solid rocket motor composite chamber, J. Solid Mech. Mater. Eng., 7(2) (2013) 324-339.

10.1299/jmmp.7.324
Information
  • Publisher :The Korean Society of Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of the Korean Society of Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 30
  • No :3
  • Pages :1-10
  • Received Date : 2025-06-13
  • Revised Date : 2025-07-13
  • Accepted Date : 2025-07-13