All Issue

2025 Vol.30, Issue 3 Preview Page

Research Article

30 September 2025. pp. 11-17
Abstract
References
1

N. Zhang, D. Zhao, J. Shi, H. Huang, Y. Zhang, D. Sun, Characterizing and predicting bluff-body solid fuel ramjet performances via shape design and multi-objective optimization model, Phys. Fluids, 35(12) (2023) 125150.

10.1063/5.0176968
2

S. Lee, C. Kim, S. Lee, A study on the design and performance analysis of a gun-launched projectile with solid fuel ramjet (SFRJ), J. Korean Soc. Propuls. Eng., 12(3) (2008) 49-59.

3

E. Kim, I. Park, S. Han, J. Ryu, H.S. Sim, Numerical study on pyrolysis and combustion characteristics of grain in solid fuel ramjets, J. Korean Soc. Propuls. Eng., 29(2) (2025) 34-44.

10.6108/KSPE.2025.29.2.034
4

I. Park, C. Kim, J. Kim, A trend analysis and future opportunities on the solid fuel ramjet technology, J. Korean Soc. Propuls. Eng., 28(3) (2024) 128-146.

10.6108/KSPE.2024.28.3.128
5

R.K. Glaznev, A.I. Karpov, O.P. Korobeinichev, A.A. Bolkisev, A.A. Shaklein, A.G. Shmakov, A.A. Paletsky, M.B. Gonchikzhapov, A. Kumar, Experimental and numerical study of polyoxymethylene (Aldrich) combustion in counterflow, Combust. Flame, 205 (2019) 358-367.

10.1016/j.combustflame.2019.04.032
6

H. Tsuji, Counterflow diffusion flames, Prog. Energy Combust. Sci., 8 (1982) 93–119.

10.1016/0360-1285(82)90015-6
7

S.R. Turns, An introduction to combustion, McGraw-Hill Companies, New York, 2012.

8

W.C. Lin, R. Peterson, M.J. Bortner, G. Young, Analysis of combustion behavior and regression rate of hypergolic solid fuels in counterflow spray experiment, Combust. Flame, 276 (2025) 114132.

10.1016/j.combustflame.2025.114132
9

G. Young, S. Hromisin, S. Loeffler, T.L. Connell Jr., Effect of oxidizer type on solid fuel combustion, J. Propuls. Power, 36(2) (2020) 248-255.

10.2514/1.B37561
10

C.M. Geipel, B.T. Bojko, C.J. Pfützner, B.T. Fisher, R.F. Johnson, Regression of solid polymer fuel strands in opposed-flow combustion with gaseous oxidizer, Proc. Combust. Inst., 39(3) (2023) 3389-3399.

10.1016/j.proci.2022.07.124
11

D.F. Gallegos, Investigation of fuel geometry and solid fuel combustion for solid fuel ramjets, Ph.D. Thesis, Virginia Polytechnic Institute and State University, USA, 2024.

12

P.K. Nardozzo, Diffusion flame studies of solid fuels with nitrous oxide, Master Theses, The Pennsylvania State University, USA, 2016.

13

G. Talamantes, Characterization of polyoxymethylene as a high-density fuel for use in hybrid rocket applications, Master Theses, The Pennsylvania State University, USA, 2019.

14

A.A. Shaklein, S.A. Trubachev, G. Morar, E.A. Mitrukova, N.A. Balobanov, A.G. Shmakov, E.A. Sosnin, Experimental and numerical study of PMMA combustion in counterflow configuration, Case Stud. Therm. Eng., 54 (2024) 104033.

10.1016/j.csite.2024.104033
15

ANSYS Chemkin Tutorials Manual, Pennsylvania State University, Available at: <https://personal.ems.psu.edu/~radovic/ChemKinTutorials_PaSR.pdf>, 2016.

16

R.H. Johansson, Investigation of solid oxidizer and gaseous fuel combustion performance using an elevated pressure counterflow experiment and reverse hybrid rocket engine, Master Theses, The Pennsylvania State University, USA, 2012.

10.1615/IntJEnergeticMaterialsChemProp.2013005785
17

S. Dakshnamurthy, D.A. Knyazkov, A.M. Dmitriev, O.P. Korobeinichev, E.J. Nilsson, A.A. Konnov, K. Narayanaswamy, Experimental study and a short kinetic model for high-temperature oxidation of methyl methacrylate, Combust. Sci. Technol., 191(10) (2019) 1789-1814.

10.1080/00102202.2018.1535492
18

K.K. Kuo, M.J. Chiaverini, Fundamentals of hybrid rocket combustion and propulsion, AIAA, 2007.

10.2514/4.866876
19

W.M. Rohsenow, J.P. Hartnett, Y.I. Cho, Handbook of Heat Transfer, McGraw-Hill Companies, New York, 1998.

20

G. Marxman, M. Gilbert, Turbulent boundary layer combustion in the hybrid rocket, In Symposium (International) on Combustion, 9 (1963) 371-383.

10.1016/S0082-0784(63)80046-6
21

R.F. Chaiken, W.H. Andersen, M.K. Barsh, E. Mishuck, G. Moe, and R.D. Schultz, Kinetics of the Surface Degradation of Polymethylmethacrylate, J. Chem. Phys., 32(1) (1960) 141-146.

10.1063/1.1700888
22

L. Yun, E. Kim, S. Oh, H.S. Sim, Study on combustion characteristics of solid fuels using pressurized counterflow combustion chamber, Proc. Korean Soc. Propuls. Eng. Conf., Jeju, Korea, May 20, 2025.

23

K. Terakawa, T. Saito, Y. Nakamura, T. Matsuoka, H. Nagata, T. Totani, M. Wakita, Effect of combustion pressure on regression rate of solid fuel under an impinging oxidizer jet counterflow diffusion flame, J. Therm. Sci. Technol., 9(2) (2014).

10.1299/jtst.2014jtst0010
Information
  • Publisher :The Korean Society of Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of the Korean Society of Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 30
  • No :3
  • Pages :11-17
  • Received Date : 2025-06-22
  • Revised Date : 2025-07-14
  • Accepted Date : 2025-07-14