All Issue

2024 Vol.29, Issue 4 Preview Page

Research Article

31 December 2024. pp. 61-70
Abstract
References
2

International Renewable Energy Agency (IRENA). Renewable power generation costs in 2020. 2021. Abu Dhabi.

3

International Energy Agency (IEA). Electricity market report. 2020. Paris, 2020.

4

News & technology for the global energy industry US, advanced CFB technology gains global market share. 2016. https://www.powermag.com/advanced-cfb-technology-gains-global-market-share/.

5

International Energy Agency (IEA). Global energy review 2021: assessing the effects of economic recoveries on global energy demand and CO2 emissions in 2021. 2021. Paris.

6

International Energy Agency (IEA). Net zero by 2050: a road map for the global energy sector. Paris: fourth revision; 2021.

7

P. Ma, Q. Huang, T. Si, Y. Yang, S. Li, Experimental investigation of NOx emission and ash related issues in ammonia/coal/biomass co-combustion in an 25 kW down fired furnace, Proceedings of Combustion Insttitue 39 (2023) 3467-3477.

10.1016/j.proci.2022.07.223
8

S. Ishihara, J. Zhang, T. Ito, Numerical calculation with detailed chemistry on ammonia co-firing in a coal-fired boiler: effect of ammonia co-firing ratio on NO emissions, Fuel 274 (2020) 117742.

10.1016/j.fuel.2020.117742
9

J. Tan, Y. He, R. Zhu, Y. Zhu, Z. Wang, Experimental study on co-firing characteristics of ammonia with pulverized coal in a staged combustion drop tube furnace, Proceedings of Combustion Insttitue 39 (2023) 3217-3225.

10.1016/j.proci.2022.07.032
10

J. Zhang, T. Ito, H. Ishii, S. Ishihara, T. Fujimori, Numerical investigation on ammonia co-firing in a pulverized coal combustion facility: effect of ammonia co-firing ratio, Fuel 267 (2020) 117166.

10.1016/j.fuel.2020.117166
11

S. Hu, Y. Zhang, Y. Ni, X. Yu, Y. Rong, K. Cen, H. Zhou, Experimental investigation of combustion and ash deposition characteristics of coal-NH3 cofiring in a 200 kW furnace, Fuel 350 (2023) 128797.

10.1016/j.fuel.2023.128797
12

S. Ishihara, J. Zhang, T. Ito, Numerical calculation with detailed chemistry of effect of ammonia co- firing on NO emissions in a coal-fired boiler, Fuel 266 (2020) 116924.

10.1016/j.fuel.2019.116924
13

S.J. Kim, S.J. Park, S.H. Jo, H.K. Lee, S.J. Yoon, J.H. Moon, H.W. Ra, S.M. Yoon, J.G. Lee, T.Y. Mun, Effects of ammonia co-firing ratios and injection positions in the coal-ammonia co-firing process in a circulating fluidized bed combustion test rig, Energy 282 (2023) 128953.

10.1016/j.energy.2023.128953
14

E.S. Lee, S.I. Keel, M.S. Kim, H.W. Jegal, J.H. Yun, J.H. Chi, S.H. Beak, M.K. Jeon, Behavior of nitrogen oxides in a lab-scale coal ammonia co-firing system, Journal of the Energy Institute 107 (2023) 101174.

10.1016/j.joei.2023.101174
15

D. Kunii, O. Levenspiel, Fluidization Engineering, Butterworth-Heinemann, Massachusetts, 1991.

16

J.S. Kim, M.W. Kim, M.H. Yeon, Y.H. Bae, D.G. Lee, K.H. Kim, B.H. Lee, C.H. Jeon, Ammonia Co-firing and NOx EMission in Lab scale Fluidized Bed Reactor, KOSCO SYMPOSIUM, 2023, 18-21.

17

ASTM Standard D3173-11; Standard Test Method for Moisture in the Analysis Sample of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2011.

18

ASTM Standard D3175-11; Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2011.

19

ASTM D3174-12; Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal. ASTM International: West Conshohocken, PA, USA, 2011.

20

ASTM D3172-13(2021)e1; Standard Practice for Proximate Analysis of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2021.

21

ASTM D5865; Standard Test Method for Gross Calorific Value of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2011.

22

DIN 51729-10; Testing of Solid Fuels-Determination of Chemical Composition of Fuel Ash-Part 10: X-ray Fluorescence Analysis. Deutsches Institut fur Normung: Berlin, Germany, 2011.

23

A. Jiao, H. Xu, F. Liu, X. Liao, J. Liu, X. Jiang, Mechanistic study on the effect of ammonia co-firing with pulverized coal on NO formation and reduction, Chemical Engineering Science 282 (2023) 119306.

10.1016/j.ces.2023.119306
24

B.H. Lee, Y.G. Bae, S.H. Cho, G.M. Kim, C.H. Jeon, Comprehensive technical review for fundamental characteristics and application of NH3 co- firing with coal, Chemical Engineering Journal 474 (2023) 145587.

10.1016/j.cej.2023.145587
25

G.W. Lee, B.H. Shon, J.G. Yoo, J.H. Jung, K.J. Oh, The influence of mixing between NH3 and NO for a De-NOx reaction in the SNCR process, Journal of Industrial and Engineering Chemistry 14 (2008) 457-467.

10.1016/j.jiec.2008.02.013
26

W.D. Monnery, K.A. Hawboldt, A.E. Pollock, W.Y. Svrcek, NH3 Pyrolysis and Oxidation in the Claus Furnace, Industrial & Engineering Chemistry Research 40 (2001) 144-151.

10.1021/ie990764r
27

C. Wang, X. Zhang, Y. Liu, D. Che, Pyrolysis and combustion characteristics of coals in oxyfuel combustion, Applied Energy 97 (2012) 264-273.

10.1016/j.apenergy.2012.02.011
28

M. Tamura, T. Gotou, H. Ishii, D. Riechelmann, Experimental investigation of ammonia combustion in a bench scale 1.2 MW-thermal pulverised coal firing furnace, Applied Energy 277 (2020) 115580.

10.1016/j.apenergy.2020.115580
Information
  • Publisher :The Korean Society of Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of the Korean Society of Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 29
  • No :4
  • Pages :61-70
  • Received Date : 2024-10-16
  • Revised Date : 2024-11-22
  • Accepted Date : 2024-11-22