All Issue

2022 Vol.27, Issue 2

Technical Notes

30 June 2022. pp. 1-13
Abstract
References
1
C.V. Raman, A change of wave-length in light scattering, Nature 121 (1928) 619. 10.1038/121619b0
2
M. Lapp, L.M. Goldman, and C.M. Penney, Raman scattering from flames, Science 175 (1972) 1112-1115. 10.1126/science.175.4026.111217797391
3
M. Lapp and C.M. Penney, eds., Laser Raman Gas Diagnostics, Plenum Press, New York, 1974. 10.1007/978-1-4684-2103-3PMC470126
4
D. Tree, T.M. Brown, K. Seshadri, M.D. Smooke, G. Balakrishnan, R.W. Pitz, V. Giovangigli, and S.P. Nandula, The structure of nonpremixed hydrogen-air flames, Combust. Sci. Technol. 104(4-6) (1995) 427-439. 10.1080/00102209508907731
5
J.A. Wehrmeyer, Z.X. Cheng, D.M. Mosbacher, R.W. Pitz, and R.J. Osborne, Opposed jet flames of lean or rich premixed propane-air reactants versus hot products, Combust. Flame 128(3) (2002) 232-241. 10.1016/S0010-2180(01)00348-0
6
D.M. Mosbacher, J.A. Wehrmeyer, R.W. Pitz, C.J. Sung, and J.L. Byrd, Experimental and numerical investigation of premixed tubular flames, Proc. Combust. Inst. 29 (2002) 1479-1486. 10.1016/S1540-7489(02)80181-X
7
S.T. Hu, P.Y. Wang, and R.W. Pitz, A structure study of premixed tubular flames, Proc. Combust. Inst. 32 (2009) 1133-1140. 10.1016/j.proci.2008.06.183
8
S.T. Hu, P.Y. Wang, R.W. Pitz, and M.D. Smooke, Experimental and numerical investigation of non-premixed tubular flames, Proc. Combust. Inst. 31 (2007) 1093-1099. 10.1016/j.proci.2006.08.058
9
S.T. Hu and R.W. Pitz, Structure study of non-premixed tubular hydrocarbon flames, Combust. Flame 156(1) (2009) 51-61. 10.1016/j.combustflame.2008.07.017
10
D.A. Long, Raman Spectroscopy, McGraw-Hill, London, 1977.
11
A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, Gordon and Breach Publishers, United Kingdom, 2nd ed., 1996. 10.1007/978-94-009-1620-3_18
12
K. Kohse-Hoinghaus and J. Jeffries, Applied Combustion Diagnostics, Taylor and Francis, New York, 2002. 10.1201/9781498719414
13
D. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules, John Wiley & Sons, Inc., New York, 2002.
14
R.W. Pitz, R. Cattolica, F. Robben, and L. Talbot, Temperature and density in a hydrogen-air flame from Rayleigh-scattering, Combust. Flame 27(3) (1976) 313-320. 10.1016/0010-2180(76)90036-5
15
R.B. Miles, W.R. Lempert, and J.N. Forkey, Laser Rayleigh scattering, Meas. Sci. Technol. 12(5) (2001) 33-51. 10.1088/0957-0233/12/5/201
16
D.A. Stephenson, Raman cross-sections of selected hydrocarbons and freons, J. Quant. Spectrosc. Radiat. Transfer 14(12) (1974) 1291-1301. 10.1016/0022-4073(74)90098-3
17
R.W. Pitz, Raman spectroscopic measurements of tubular flames, Tubular Combustion, by S. Ishizuka, et al, Momentum Press, LCC, New York, 2013.
18
P.A. Nooren, M. Versluis, T.H. van der Meer, R.S. Barlow, and J.H. Frank, Raman-Rayleigh-LIF measurements of temperature and species concentrations in the Delft piloted turbulent jet diffusion flame, Appl. Phys. B 71 (2000), 95-111. 10.1007/s003400000278
19
W. Meier, O. Keck, Laser Raman scattering in fuel-rich flames: background levels at different excitation wavelengths, Meas. Sci. Technol. 13 (2002) 741-749. 10.1088/0957-0233/13/5/312
20
D. Geyer, 1D Raman/Rayleigh Experiments in a Turbulent Opposed Jet, Ph.D. Thesis, TU Darmstadt, Dusseldorf, Germany, 2005.
21
J. Kosima and Q.-V. Nguyen, Quantitative analysis of spectral interference of spontaneous Raman scattering in high-pressure fuel-rich H2-air combustion, J. Quant. Spectrosc. Radiat. Transfer, 94 (2005) 439-466. 10.1016/j.jqsrt.2004.10.004
22
R.W. Dibble, S.H. Starner, A.R. Masri, and R.S. Barlow, An improved method of data acquisition and reduction for laser Raman-Rayleigh and fluorescence scattering from multispecies, Appl. Phys. B 51 (1990) 39-43. 10.1007/BF00332322
23
R.S. Barlow, C.D. Carter, and R.W. Pitz, Multiscalar diagnostics in turbulent flames, in: K. Kohse-Hoinghaus and J. Jeffries (Eds.), Applied Combustion Diagnostics, Taylor and Francis, New York, 2002.
24
F. Fuest, R.S. Barlow, D. Geyer, F. Seffrin, A. Dreizler, A hybrid method for data evaluation in 1-D Raman spectroscopy, Proc. Combust. Inst. 33 (2011) 815-822. 10.1016/j.proci.2010.06.064
25
P. Wang, X. Luo, and Q. Li, Heat transfer study of the Hencken burner flame, Flow Turbulence Combustion 101 (2018) 795-819. 10.1007/s10494-018-9901-y
26
https://cantera.org.
27
D.C. Tinker, C.A. Hall, and R.W. Pitz, Measurement and simulation of partially-premixed cellular tubular flames, Proc. Combust. Inst. 37 (2019) 2021-2028. 10.1016/j.proci.2018.06.099
28
D.C. Tinker, C.A. Hall, and R.W. Pitz, Major species measurement and simulation of partially-premixed, cellular, tubular H2-air flames, In 55th AIAA Aerospace Sciences Meeting, Paper 1801, Grapevine, Texas USA, 2017. 10.2514/6.2017-1801
29
P. Wang, J.A. Wehrmeyer, and R.W. Pitz, Stretch rate of tubular premixed flames, Combust. Flame 145(1-2) (2006) 401-414. 10.1016/j.combustflame.2005.09.015
30
Y. Wang, S.T. Hu, and R.W. Pitz, Extinction and cellular instability of premixed tubular flames, Proc. Combust. Inst. 32 (2009) 1141-1147. 10.1016/j.proci.2008.07.012
31
R.J. Osborne, P.A. Skaggs, and R.W. Pitz, Multi-camera/spectrometer design for instantaneous line Rayleigh/Raman/LIPF measurements in methane/air flames, In 34th AIAA Aerospace Sciences Meeting, Paper 0175, Reno, Nevada USA, 1996. 10.2514/6.1996-175
32
R.D. Hancock, K.E. Bertagnolli, and R.P. Lucht, Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner, Combust. Flame 109 (1997) 323-331. 10.1016/S0010-2180(96)00191-5
33
D.C. Tinker, Partially Premixed Tubular Flames: An Experimental Survey, MS Thesis, Vanderbilt University, Nashville, TN, 2017.
34
S.P. Nandula, Lean Premixed Flame Structure in Intense Turbulence: Rayleigh/Raman/LIF Measurements and Modeling, Ph.D. Thesis, Vanderbilt University, Nashville, TN, 2003.
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 27
  • No :2
  • Pages :1-13
  • Received Date :2022. 05. 22
  • Revised Date :2022. 06. 05
  • Accepted Date : 2022. 06. 08