All Issue

2022 Vol.27, Issue 2 Preview Page

Technical Notes

30 June 2022. pp. 14-38
Abstract
References
1
IEA, Key World Energy Statistics 2021, Available at:<https://www.iea.org/reports/key-world-energy-statistics-2021>, 2021
2
Ministry of Trade, Industry and Energy, 9th Basic Plan for Electricity Supply and Demand (2020~2034), 2020.
3
C. Palmer, Worldwide Gas Turbine Market Report 2022, Turbomachinery Magazine, Available at:<https://www.turbomachinerymag.com/view/worldwide-gas-turbine-market-report-2022>, 2021.
4
S.C. Gulen, Gas turbines for electric power generation, Cambridge University Press, 2019. 10.1017/9781108241625
5
ALSTON, The World's First Industrial Gas Turbine Set - GT NEUCHÂTEL, 2007.
6
DOOSAN, Doosan Heavy Industries & Construction set to complete development of large gas turbine for power generation ... Korea to become fifth country to own independent model, Available at:<https://www.doosan.com/en/media-center/press-release_view/?id=20172059&page=0&#:~:text=The%20DGT6%2D300H%20S1%20developed,of%20a%20mid%2Dsized%20car>, 2019.
7
S. Patel, A Brief History of GE Gas Turbines, POWER Magazine, Available at: <https://www.powermag.com/a-brief-history-of-ge-gas-turbines-2/>, 2019.
8
ETN Global, The path towards a zero-carbon gas turbine, European Turbine Network, 2020.
9
Korea Institute of Energy Reserach, Climate Technology Strategy Office, CCUS Industry trends and pre-market 2030 - with '2021 CCUS Market Outlook, BNEF' at the center-, KIER CT Brief 41 (2021).
10
J. Kim, Application of Carbon-Free New Source for Carbon Neutral Transition, World Energy Market Insight 22(1) (2022).
11
P. Agreement, Paris agreement, Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change (21st Session, 2015: Paris).
12
G. Jeong, Carbon Neutral Policy and Implications in Major Countries: The landscape of manufacturing economy changes!, Korea International Trade Association, April 2021.
13
E. Union, European Climate Law, Available at:<https://ec.europa.eu/clima/policies/eu-climate-action/law_en>, 2021.
14
European Green Deal Call: €1 billion investment to boost the green and digital transition, Available at:<https://ec.europa.eu/commission/presscorner/detail/en/ip_20_1669>, 2020.
15
Cooperation of related ministries, National Greenhouse Gas Reduction Goals Up for 2030, 2021.
16
The Government of the Republic of Korea, 2050 Carbon Neutrality Strategy for Sustainable Green Society in Korea, 2020.
17
A roadmap for revitalizaing the hydrogen economy, Available at:<https://www.etrans.or.kr/policy/05.php>
18
Greenhouse Gas Emission Trading System, Available at:<https://me.go.kr/home/web/index.do?menuId=10292>, 2021.
19
S.K. Ryi, J.Y. Han, C.H. Kim, H. Lim, H.Y. Jung, Technical trends of hydrogen production, Clean Technology 23(2) (2017) 121-132.
20
A. Basile, L. DiPaola, F. Hai, V. Piemonte, Membrane reactors for energy applications and basic chemical production, Elsevier, 2015.
21
K. Ahmed, K. Foger, Kinetics of internal steam reforming of methane on Ni/YSZ-based anodes for solid oxide fuel cells, Catal. Today 63(2-4) (2000) 479-487. 10.1016/S0920-5861(00)00494-6
22
J.R. Rostrup-Nielsen, Catalyst Steam Reforming, Springer Berlin Heidelberg, Berlin (1984) 30-73. 10.1007/978-3-642-93247-2_1
23
A.C. Luna, A.M. Becerra, Kinetics of Methane Steam Reforming on a Ni on Alumina-Titania Catalyst, React. Kinet. Catal. Lett. 61(2) (1997) 369-374. 10.1007/BF02478395
24
J. Wei, E. Iglesia, Mechanism and site requirements for activation and chemical conversion of methane on supported Pt clusters and turnover rate comparisons among noble metals, J. Phys. Chem. B 108(13) (2004) 4094-4103. 10.1021/jp036985z
25
E.C. Luna, A.M. Becerra, M.I. Dimitrijewits, Methane steam reforming over rhodium promoted Ni/Al 2 O 3 catalysts, React. Kinet. Catal. Lett. 67(2) (1999) 247-252. 10.1007/BF02475767
26
J.H. Jeong, J.W. Lee, D.J. Seo, Y. Seo, W.L. Yoon, D.K. Lee, D.H. Kim, Ru-doped Ni catalysts effective for the steam reforming of methane without the pre-reduction treatment with H2, Appl. Catal., A 302(2) (2006) 151-156. 10.1016/j.apcata.2005.12.007
27
A.D. Ebner, J.A. Ritter, State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries, Sep. Sci. Technol. 44(6) (2009) 1273-1421. 10.1080/01496390902733314
28
P.D. Vernon, M.L. Green, A.K. Cheetham, A.T. Ashcroft, Partial oxidation of methane to synthesis gas, Catal. Lett. 6(2) (1990) 181-186. 10.1007/BF00774718
29
K. Liu, C. Song, V. Subramani, Hydrogen and syngas production and purification technologies, John Wiley & Sons, 2010. 10.1002/9780470561256
30
E.A.F. Vasconcelos, R.C. Leitao, S.T. Santaella, Factors that affect bacterial ecology in hydrogen-producing anaerobic reactors, Bioenerg. Res. 9(4) (2016) 1260-1271. 10.1007/s12155-016-9753-z
31
S.N.A. Rahman, M.S. Masdar, M.I. Rosli, E.H. Majlan, T. Husaini, S.K. Kamarudin, W.R.W. Daud, Overview biohydrogen technologies and application in fuel cell technology, Renewable and sustainable energy reviews 66 (2016) 137-162. 10.1016/j.rser.2016.07.047
32
O.S. Joo, Hydrogen Production Technology, Korean Chem. Eng. Res. 49(6) (2011) 688-696. 10.9713/kcer.2011.49.6.688
33
J. Rossmeisl, A. Logadottir, J.K. Nørskov, Electrolysis of water on (oxidized) metal surfaces, Chem. Phys. 319(1-3) (2005) 178-184. 10.1016/j.chemphys.2005.05.038
34
S. Abanades, P. Charvin, F. Lemont, G. Flamant, Novel two-step SnO2/SnO water-splitting cycle for solar thermochemical production of hydrogen, Int. J. Hydrogen Energy 33(21) (2008) 6021-6030. 10.1016/j.ijhydene.2008.05.042
35
S. Uemiya, M. Kajiwara, T. Kojima, Composite membranes of group VIII metal supported on porous alumina, AlChE J. 43(S11) (1997) 2715-2723. 10.1002/aic.690431317
36
B.N. Nair, T. Yamaguchi, T. Okubo, H. Suematsu, K. Keizer, S.I. Nakao, Sol-gel synthesis of molecular sieving silica membranes, J. Membr. Sci. 135(2) (1997) 237-243. 10.1016/S0376-7388(97)00137-3
37
S.K. Ryi, Hydrogen Selective Membrane and Clean Energy, NICE 32(2) (2014) 188-194.
38
T.L. Ward, T. Dao, Model of hydrogen permeation behavior in palladium membranes, J. Membr. Sci. 153(2) (1999) 211-231. 10.1016/S0376-7388(98)00256-7
39
International Energy Agency, The Future of Hydrogen, IEA, Paris, 2019.
40
A. Valera-Medina, H. Xiao, M. Owen-Jones, W.I. David, P.J. Bowen, Ammonia for power, Prog. Energy Combust. Sci. 69 (2018) 63-102. 10.1016/j.pecs.2018.07.001
41
J. Tallaksen, F. Bauer, C. Hulteberg, M. Reese, S. Ahlgren, Nitrogen fertilizers manufactured using wind power: greenhouse gas and energy balance of community-scale ammonia production, J. Clean. Prod. 107 (2015) 626-635. 10.1016/j.jclepro.2015.05.130
42
E. Morgan, J. Manwell, J. McGowan, Wind-powered ammonia fuel production for remote islands: A case study, Renew. Energ. 72 (2014) 51-61. 10.1016/j.renene.2014.06.034
43
J. Brightling, Ammonia and the Fertiliser Industry: The Development of Ammonia at Billingham, Johnson Matthey Tech. 62(1) (2018) 32-47. 10.1595/205651318X696341
44
G.D. Rawlings, R.B. Reznik, Source Assessment: Synthetic Ammonia Production, EPA-600/2-77-107m, U. S. Environmental Protection Agency, Cincinnati, OH, 1977.
45
C. Smith, A.K. Hill, L. Torrente-Murciano, Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape, Energ. Environ. Sci. 13(2) (2020) 331-344. 10.1039/C9EE02873K
46
J. Long, S. Chen, Y. Zhang, C. Guo, X. Fu, D. Deng, J. Xiao, Direct Electrochemical Ammonia Synthesis from Nitric Oxide, Angew. Chem. 132(24) (2020) 9798-9805. 10.1002/ange.202002337
47
B. Cui, J. Zhang, S. Liu, W. Xiang, L. Liu, H. Xin, M.J. Lefler, S. Licht, Electrochemical synthesis of ammonia directly from N2 and water over iron-based catalysts supported on activated carbon, Green Chem. 19(1) (2017) 298-304. 10.1039/C6GC02386J
48
V. Kyriakou, I. Garagounis, E. Vasileiou, A. Vourros, M. Stoukides, Progress in the Electrochemical Synthesis of Ammonia, Catal. Today 286 (2017) 2-13. 10.1016/j.cattod.2016.06.014
49
Y. Bicer, I. Dincer, C. Zamfirescu, G. Vezina, F. Raso, Comparative life cycle assessment of various ammonia production methods, J. Clean. Prod. 135 (2016) 1379-1395. 10.1016/j.jclepro.2016.07.023
50
R. Lan, J.T. Irvine, S. Tao, Synthesis of ammonia directly from air and water at ambient temperature and pressure, Sci. Rep. 3(1) (2013) 1-7. 10.1038/srep0114523362454PMC3557446
51
S. Lee, H.J. Lee, Potential Applicabilities of Ammonia in Future Hydrogen Energy Supply Industries, Appl. Chem. Eng. 30(6) (2019) 667-672.
52
X.Z. Xiao, Y.L. Cao, Y.Y. Cai, Decomposition of NH3 on Ir(110): A first-principle study, Surf. Sci. 605(7-8) (2011) 802-807. 10.1016/j.susc.2011.01.023
53
R. Atsumi, R. Noda, H. Takagi, L. Vecchione, A. Di Carlo, Z. Del Prete, K. Kuramoto, Ammonia decomposition activity over Ni/SiO2 catalysts with different pore diameters, Int. J. Hydrogen Energy 39(26) (2014) 13954-13961. 10.1016/j.ijhydene.2014.07.003
54
S.F. Zaman, L.A. Jolaoso, S. Podila, A.A. Ai-Zahrani, Y.A. Alhamed, H. Driss, M.M. Daous, L. Petrov, Ammonia decomposition over citric acid chelated gamma-Mo2N and Ni2Mo3N catalysts, Int. J. Hydrogen Energy 43(36) (2018) 17252-17258. 10.1016/j.ijhydene.2018.07.085
55
Y. Hayakawa, S. Kambara, T. Miura, Hydrogen production from ammonia by the plasma membrane reactor, Int. J. Hydrogen Energy 45(56) (2020) 32082-32088. 10.1016/j.ijhydene.2020.08.178
56
Q.F. Lin, Y.M. Jiang, C.Z. Liu, L.W. Chen, W.J. Zhang, J. Ding, J.G. Li, Instantaneous hydrogen production from ammonia by non-thermal arc plasma combining with catalyst, Energy Reports 7 (2021) 4064-4070. 10.1016/j.egyr.2021.06.087
57
S. Kambara, Y. Hayakawa, M. Masui, T. Miura, K. Kumabe, H. Moritomi, Relation between chemical composition of dissociated ammonia by atmospheric plasma and DeNOx characteristics, T. Jpn. Soc. Mech. Eng. Series B 78(789) (2012) 1038-1042. 10.1299/kikaib.78.1038
58
S. Daivanayagam, $3.40 Trillion to be Invested Globally in Renewable Energy by 2030, Finds Frost & Sullivan, Frost & Sullivan, Available at: <https://www.frost.com/news/press-releases/3-40-trillion-to-be-invested-globally-in-renewable-energy-by-2030-finds-frost-sullivan/> ,2020.
59
Mitsubishi Power, Intermountain Power Agency Orders MHPS JAC Gas Turbine Technology for Renewable-Hydrogen Energy Hub, Available at: <https://power.mhi.com/regions/amer/news/200310.html>, 2020.
60
Yano Research Institute Ltd., Hydrogen Energy Systems Market 2020, C62106400, Aug 2020.
61
R. Dennis, DOE FECM's Advanced Turbines Program, 2021 University Turbines Systems Research and Advanced Turbines Program Review Workshop, 2021.
62
P. Riley, Gas Turbines: Capacity & Context, ARPA-e Flexible Carbon Capture Workshop, Jul 2019.
63
Y. Joo, M. Kim, J. Park, S. Park, J. Shin, Hydrogen Enriched Gas Turbine: Core Technologies and R&D Trend, KHNES 31(4) (2020) 351-362. 10.7316/KHNES.2020.31.4.351
64
Long Ridge Energy Terminal, Long Ridge Energy Terminal Partners with New Fortress Energy and GE to Transition Power Plant to Zero-Carbon Hydrogen, Available at: <https://www.longridgeenergy.com/news/2020-10-13-long-ridge-energy-terminal-partners-with-new-fortress-energy-and-ge-to-transition-power-plant-to-zero-carbon-hydrogen>, 2020.
65
Baker Hughes, Gas turbine experience with hydrogen for energy transition, 2020.
66
R. Pasquariello, Gas turbine innovation, with or without hydrogen, Turbomachinery Magazine, Available at:<https://www.turbomachinerymag.com/view/gas-turbine-innovation-with-or-without-hydrogen>, 2020.
67
FCH JU, Hydrogen Roadmap Europe, 2019.
68
Power Magazine, Enel's Fusina Hydrogen-Fueled Plant Goes Online, Available at: <https://www.powermag.com/enels-fusina-hydrogen-fueled-plant-goes-online/>, 2009
69
ModernPowerSystems, Fusina combined cycle project: planning to run on pure hydrogen, Available at:<https://www.modernpowersystems.com/features/featurefusina-combined-cycle-project-planning-to-run-on-pure-hydrogen/>, 2008.
70
NS ENERGY, Statoil, Vattenfall and Gasunie partner for conversion of 1.3GW Magnum facility into hydrogen-powered plant, Available at:<https://www.nsenergybusiness.com/news/newsstatoil-vattenfall-and-gasunie-partner-to-study-conversion-of-13gw-magnum-power-plant-into-hydrogen-5865441/#>, 2017.
71
S. Patel, Siemens' Roadmap to 100% Hydrogen Gas Turbines, POWER Magazine, Available at:<https://www.powermag.com/siemens-roadmap-to-100-hydrogen-gas-turbines/>, 2020.
72
SIEMENS, HYFLEXPOWER: The world's first integrated power-to-X-to-power hydrogen gas turbine demonstrator, Available at:<https://press.siemens.com/global/en/pressrelease/hyflexpower-worlds-first-integrated-power-x-power-hydrogen-gas-turbine-demonstrator>, 2020.
73
Gas Turbine World, Ansaldo Energia Hydrogen Gas Turbines, Available at: <https://gasturbineworld.com/ansaldo-hydrogen-gas-turbines/>, 2021.
74
T. Asai, Y. Akiyama, S. Dodo, Recent Advances in Carbon Capture and Storage. Chapter 1. Development of a State-of-the-Art Dry Low NOx Gas Turbine Combustor for IGCC with CCS, INTECH (2017) 7-17. 10.5772/66742
75
NEDO, World's First Heat and Electricity Supplied in an Urban Area Using 100% Hydrogen, Available at:<https://www.nedo.go.jp/english/news/AA5en_100382.html>, 2018.
76
METI, 4th Strategic Energy Plan, 2014.
77
Kawasaki Heavy Industries, Ltd., Kawasaki Develops Low-NOx Hydrogen-fueled Gas Turbine Combustion Technology, Available at: <https://global.kawasaki.com/en/corp/newsroom/news/detail/?f=20151221_2830>, 2015.
78
NEDO, World's First Successful Technology Verification of 100% Hydrogen-fueled Gas Turbine Operation with Dry Low NOx Combustion Technology, Availabe at: <https://www.nedo.go.jp/english/news/AA5en_100427.html>, 2020.
79
DOE, Project Selections: University Turbines Systems Research (UTSR) - Focus on Hydrogen (H2) Fuels, Available at: <https://www.energy.gov/fecm/articles/project-selections-university-turbines-systems-research-utsr-focus-hydrogen-h2-fuels>, 2021.
80
NETL, PROCEEDINGS - 2021 UNIVERSITY TURBINE SYSTEMS RESEARCH (UTSR) PROJECT REVIEW MEETING - VIRTUAL, Available at: <https://netl.doe.gov/21UTSR-proceedings>, 2021.
81
EPSRC, EPSRC Centre for Doctoral Training in Gas Turbine Aerodynamics, Available at: <https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/L015943/1>, 2014.
82
EU, Next Generation of Micro Gas Turbines for High Efficiency, Low Emissions and Fuel Flexibility, Available at: <https://cordis.europa.eu/project/id/861079>, 2020.
83
EU, CompLex thErmoAcoustic iNteraction mEchanisms in spRay Flames in Low-nox Annular coMbustion chambErS, Available at: <https://cordis.europa.eu/project/id/843958>, 2019.
84
EU, Simulation and Control of Renewable COmbustion (SCIROCCO), Available at: <https://cordis.europa.eu/project/id/832248>, 2019.
85
EU, Enabling Hydrogen-enriched burner technology for gas turbines through advanced measurement and simulation, Available at: <https://cordis.europa.eu/project/id/682383>, 2016.
86
EU, HYdrogen as a FLEXible energy storage for a fully renewable European POWER system, Available at: <https://cordis.europa.eu/project/id/884229>, 2020.
87
EU, FLExibilize combined cycle power plant through power-to-X solutions using non-CONventional FUels, Available at: <https://cordis.europa.eu/project/id/884157>, 2020.
88
EU, INSpiring Pressure gain combustion Integration, Research, and Education, Available at: <https://cordis.europa.eu/project/id/956803>, 2021.
89
J. Atchison, JERA targets 50% ammonia-coal co-firing by 2030, Available at: <https://www.ammoniaenergy.org/articles/jera-targets-50-ammonia-coal-co-firing-by-2030/>, 2022.
90
IHI, IHI to Begin Developing Wholly Liquid Ammonia-Fueled Gas Turbine that Is Free of Carbon Dioxide Emissions, Available at: <https://www.ihi.co.jp/en/all_news/2021/resources_energy_environment/1197632_3360.html>, 2022.
91
I. Hiroaki, Green Innovation Fund Project Launches 'Fuel Ammonia Supply Chain', Available at: <https://www.nedo.go.jp/news/press/AA5_101502.html>, 2022.
92
A. Horikawa, K. Okada, M. Ashikaga, M. Yamaguchi, Y. Douura, Y. Akebi, Hydrogen Utilization - Development of Hydrogen Fueled Power Generation Technologies, Kawasaki Technical Review (182) (2021) 41-46.
93
NS ENERGY, Nuon Magnum Power Plant, Available at: <https://www.nsenergybusiness.com/projects/nuon-magnum-power-plant/>
94
MITSUBISHI POWER, M501J Series, Available at: <https://power.mhi.com/products/gasturbines/lineup/m501j>
95
J. Lee, Ammonia is rising ① Ammonia 'injured' as optimal hydrogen storage transport medium, Available at: <https://www.h2news.kr/news/article_print.html?no=8687>, 2020.
96
Y. KAWAKAMI, S. ENDO, H. HIRAI, A Feasibility Study on the Supply Chain of CO2-Free Ammonia with CCS and EOR, IEEJ, 2019.
97
KEEi, World Energy Market Insight Vol. 21-24, 2021. 10.1002/inst.12336
98
J. Lee, Hydrogen·Ammonia Change the fuel paradigm for power generation, Available at: <https://www.h2news.kr/news/article.html?no=9477>, 2022.
99
Hanwha, Hanwha TotalEnergies Petrochemical, Available at: <https://www.hanwha.co.kr/business/manufacture/total.do>
100
GE, 6F.03 Heavy Duty Gas Turbine Poster
101
I. Choi, The heart of development, 'the gas turbine', evolves into a hydrogen turbine, Available at: <https://www.energy-news.co.kr/news/articleView.html?idxno=80265>, 2022.
102
DOOSAN, 2020 Integrated Report of Doosan Heavy Insdustries & Construction, 2020.
103
C. Kim, Hanwha Impact Acquired 2 Hydrogen Mixed-Use Power Companies, Available at: <https://www.yna.co.kr/view/AKR20210706076700003?input=1195m>, 2021.
104
J. Lee, Hanwha Impact Start of Hydrogen Mixing Power Generation Project, Available at: <https://www.h2news.kr/news/article.html?no=9162>, 2021.
105
Korea Western Power, Development of Blue Hydrogen Production Technology Starts, Available at: <https://www.iwest.co.kr/iwest/432/subview.do?enc=Zm5jdDF8QEB8JTJGYmJzJTJGaXdlc3QlMkYxMjAlMkYxNzk3NSUyRmFydGNsVmlldy5kbyUzRg%3D%3D>, 2021.
106
J. Lee, Development of Gas Turbine Hydrogen Mixing Technology to Eco-Friendly Power Plant by KEPCO KEPRI, Available at: <http://www.epj.co.kr/news/articleView.html?idxno=28436>, 2021.
107
T. Lieuwen, V. McDonell, E. Petersen, D. Santavicca, Fuel flexibility influences on premixed combustor blowout, flashback, autoignition, and stability, J. Eng. Gas Turb. Power 130(1) (2008) 10.1115/1.2771243
108
T. Lieuwen, V. McDonell, D. Santavicca, T. Sattelmayer, Burner development and operability issues associated with steady flowing syngas fired combustors, Combust. Sci. Technol. 180(6) (2008) 1169-1192. 10.1080/00102200801963375
109
J. Hord, Is hydrogen a safe fuel?, Int. J. Hydrogen Energy 3(2) (1978) 157-176. 10.1016/0360-3199(78)90016-2
110
R.D. McCarty, J. Hord, H.M. Roder, Selected properties of hydrogen, US Government Printing Office, Washington DC, 1981. 10.6028/NBS.MONO.168
111
J. Beita, M. Talibi, S. Sadasivuni, R. Balachandran, Thermoacoustic instability considerations for high hydrogen combustion in lean premixed gas turbine combustors: a Review, Hydrogen 2(1) (2021) 33-57. 10.3390/hydrogen2010003
112
H. Kobayashi, A. Hayakawa, K.K.A. Somarathne, E.C. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst. 37(1) (2019) 109-133. 10.1016/j.proci.2018.09.029
113
NIST Chemistry WebBook, SRD 69, Thermophysical properties of fluid systems, National Institute of Standard and Technology, Available at: <http://webbook.nist.gov/chemistry/fluid/>
114
D.G. Goodwin, R.L. Speth, H.K. Moffat, B.W. Weber, Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, https://www.cantera.org, 2021, Version 2.5.1.
115
G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr., V.V. Lissianski, Z. Qin, http://www.me.berkeley.edu/gri_mech/
116
A.C. Benim, K.J. Syed, Flashback mechanisms in lean premixed gas turbine combustion, Academic Press, 2014.
117
S. Daniele, P. Jansohn, J. Mantzaras, K. Boulouchos, Turbulent flame speed for syngas at gas turbine relevant conditions, Proc. Combust. Inst. 33(2) (2011) 2397-2944. 10.1016/j.proci.2010.05.057
118
D. Kim, Review on the development trend of hydrogen gas turbine combustion technology, J. Korean Soc. Combust. 24(4) (2019) 1-10. 10.15231/jksc.2019.24.4.001
119
T. Sattelmayer, C. Mayer, J. Sangl, Interaction of flame flashback mechanisms in premixed hydrogen-air swirl flames, J. Eng. Gas Turb. Power 138(1) (2016). 10.1115/1.4031239
120
ETN Global, Hydrogen gas turbines - the path towards a zero-carbon gas turbine, ETN Global, Available at: <https://etn.global/wp-content/uploads/2020/02/ETN-Hydrogen-Gas-Turbines-report.pdf.>, 2020.
121
P. Jansohn, Modern gas turbines systems: high efficiency, low emissions, fuel flexible power generation, WP, Woodhead Publishing, Oxford, Cambridge, Philadelphia, 2013.
122
D.J. Beerer, V.G. McDonell, Autoignition of hydrogen and air inside a continuous flow reactor with application to lean premixed combustion, J. Eng. Gas Turb. Power 130 (2008). 10.1115/1.2939007
123
T.C. Lieuwen, V. Yang, Combustion instabilities in gas turbine engines, operational experience, fundamental mechanisms and modeling, Prog. Astronaut. Aero. 210, 2005. 10.2514/4.866807
124
T. Lee, K.T. Kim, Direct comparison of self-excited instabilities in mesoscale multinozzle flames and conventional large-scale swirl-stabilized flames, Proc. Combust. Inst. 38(4) (2021) 6005-6013. 10.1016/j.proci.2020.05.049
125
U. Jin, K.T. Kim, Experimental investigation of combustion dynamics and NOx/CO emissions from densely distributed lean-premixed multinozzle CH4/C3H8/H2/air flames, Combust. Flame 229 (2021). 10.1016/j.combustflame.2021.111410
126
H. Kang, K.T. Kim, Combustion dynamics of multi-element lean-premixed hydrogen-air flame ensemble, Combust. Flame 233 (2021). 10.1016/j.combustflame.2021.111585
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 27
  • No :2
  • Pages :14-38
  • Received Date :2022. 03. 12
  • Revised Date :2022. 03. 28
  • Accepted Date : 2022. 04. 14