Research Article
S. Sorrell, Reducing energy demand: A review of issues, challenges and approaches, Renewable and Sustainable Energy Reviews, 47 (2015) 74-82.
10.1016/j.rser.2015.03.002H. Kobayashi, A. Hayakawa, K.K.A. Somarathne, & E.C. Okafor, Science and technology of ammonia combustion, Proceedings of the Combustion Inst., 37(1) (2019) 109-133.
10.1016/j.proci.2018.09.029A.M. Elbaz, S. Wang, T.F. Guiberti, & W. L. Roberts, Review on the recent advances on ammonia combustion from the fundamentals to the applications, Fuel Commun., 10 (2022) 100053.
10.1016/j.jfueco.2022.100053W.S. Chai, Y. Bao, P. Jin, G. Tang, & L. Zhou, A review on ammonia, ammonia-hydrogen and ammonia-methane fuels, Renewable and Sustainable Energy Reviews, 147 (2021) 111254.
10.1016/j.rser.2021.111254E.C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, & H. Kobayashi, Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames, Combustion and Flame, 187 (2018) 185-198.
10.1016/j.combustflame.2017.09.002A.A. Konnov, Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism, Combustion and Flame, 156(11) (2009) 2093-2105.
10.1016/j.combustflame.2009.03.016J. Otomo, M. Koshi, T. Mitsumori, H. Iwasaki, & K. Yamada, Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion, International Journal of Hydrogen Energy, 43(5) (2018) 3004-3014.
10.1016/j.ijhydene.2017.12.066E.C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, & H. Kobayashi, Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism, Combustion and Flame, 204 (2019) 162-175.
10.1016/j.combustflame.2019.03.008J.A. Miller, M.D. Smooke, R.M. Green, & R.J. Kee, Kinetic modeling of the oxidation of ammonia in flames, Combustion Science and Tech., 34(1-6) (1983) 149-176.
10.1080/00102208308923691H. T. Nguyen, P. Domingo, L. Vervisch,, & P. D. Nguyen, Machine learning for integrating combustion chemistry in numerical simulations, Energy and AI, 5 (2021) 100082.
10.1016/j.egyai.2021.100082G. Mao, T. Shi, C. Mao, & P. Wang, Prediction of NOx emission from two-stage combustion of NH3-H2 mixtures under various conditions using artificial neural networks, International Journal of Hydrogen Energy, 49 (2024) 1414-1424.
10.1016/j.ijhydene.2023.10.129K. Wan, C. Barnaud, L. Vervisch, & P. Domingo, Chemistry reduction using machine learning trained from non-premixed micro-mixing modeling: Application to DNS of a syngas turbulent oxy-flame with side-wall effects, Combustion and Flame, 220 (2020) 119-129.
10.1016/j.combustflame.2020.06.008L. Liu, F. Tan, Z. Wu, & Y. Wang, Combining genetic algorithm and deep learning to optimize a chemical kinetic mechanism of ammonia under high pressure, Fuel, 360 (2024) 130508.
10.1016/j.fuel.2023.130508W. Ji & S. Deng, Autonomous discovery of unknown reaction pathways from data by chemical reaction neural network. The Journal of Physical Chemistry A. 125(4) (2021) 1082-1092.
10.1021/acs.jpca.0c0931633471526W. Ji, X. Su, B. Pang, Y. Li, Z. Ren, & S. Deng, SGD-based optimization in modeling combustion kinetics: Case studies in tuning mechanistic and hybrid kinetic models, Fuel, 324 (2022) 124560.
10.1016/j.fuel.2022.124560- Publisher :The Korean Society of Combustion
- Publisher(Ko) :한국연소학회
- Journal Title :Journal of the Korean Society of Combustion
- Journal Title(Ko) :한국연소학회지
- Volume : 29
- No :2
- Pages :37-43
- Received Date : 2024-05-31
- Revised Date : 2024-06-17
- Accepted Date : 2024-06-17
- DOI :https://doi.org/10.15231/jksc.2024.29.2.037