Research Article
T.M. Letcher, Global warming-a complex situation, Climate Change (3rd ed), (2021) 3-17.
10.1016/B978-0-12-821575-3.00001-3L. Kang, W. Pan, J. Zhang, W. Wang, C. Tang, A review on ammonia blends combustion for industrial applications, Fuel, 332 (2023) 126150.
10.1016/j.fuel.2022.126150R.A. Field, R.G. Derwnt, Field RA, Derwent RG. Global warming consequences of replacing natural gas with hydrogen in the domestic energy sectors of future low-carbon economies in the United Kingdom and the United States of America, Int. J. Hydrogen Energy, 46(58) (2021) 30190-30203.
10.1016/j.ijhydene.2021.06.120H.L. Yip, A. Srna, A.C.Y. Yuen, S.H. Kook, R.A. Taylor, G.H. Yeoh, P.R. Medwell, Q.N. Chan, A review of hydrogen direct injection for internal combustion engines: towards carbon-free combustion, Appl. Sci., 9(22) (2019) 4842.
10.3390/app9224842Y.D. Jo, D.A. Crowl, Explosion characteristics of hydrogen-air mixtures in a spherical vessel, Process Saf. Prog., (2010) 216-223.
10.1002/prs.10370C. Tang, Z. Huang, C. Jin, J. He, J. Wang, X. Wang, H. Miao, Explosion characteristics of hydrogen-nitrogen-air mixtures at elevated pressures and temperatures, Int. J. Hydrogen Energy, 34(1) (2009) 554-561.
10.1016/j.ijhydene.2008.10.028M. Comotti, S. Frigo, Hydrogen generation system for ammonia-hydrogen fuelled internal combustion engines, Int. J. Hydrogen Energy, 40(33) (2015) 10673-10686.
10.1016/j.ijhydene.2015.06.080P. Berwal, S. Kumar, B. Khandelwal, A comprehensive review on synthesis, chemical kinetics, and practical application of ammonia as future fuel for combustion, J. Energy Inst., (2021) 273-298.
10.1016/j.joei.2021.10.001A. Valera-Medina, H. Xiao, M. Owen-Jones, W.I.F. David, P.J. Bowen, Ammonia for power, Prog. Energy Combust. Sci., 69 (2018) 63-102.
10.1016/j.pecs.2018.07.001A.A. Khateeb, T.F. Guiberti, X. Zhu, M. Younes, A. Jamal, W.L. Roberts, Stability limits and NO emissions of technically-premixed ammonia-hydrogen-nitrogen-air swirl flames, Int. J. Hydrogen Energy, 45(41) (2020) 22008-22018.
10.1016/j.ijhydene.2020.05.236H. Kobayashi, A. Hayakawa, K.D.K.A. Somarathne, E.C. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst., 37(1) (2019) 109-133.
10.1016/j.proci.2018.09.029F. Verkamp, M. Hardin, J. Williams, Ammonia combustion properties and performance in gas- turbine burners, Proc. Combust. Inst., 11(1) (1967) 985-992.
10.1016/S0082-0784(67)80225-XW.S. Chai, Y. Bao, P. Jin, G. Tang, L. Zhou, A review on ammonia, ammonia-hydrogen and ammonia-methane fuels, Renew. Sustain. Energy Rev., 147 (2021) 111254.
10.1016/j.rser.2021.111254Z. Wang, C. Ji, D. Wang, R. Hou, T. Zhang, S. Wang, Experimental and numerical study on premixed partially dissociated ammonia mixtures. Part II: Numerical study of premixed combustion characteristics, Fuel, 306 (2021) 121660.
10.1016/j.fuel.2021.121660Y.C. Li, M.S. Bi, B. Li, Y.H. Zhou, L. Huang, W. Gao, Explosion hazard evaluation of renewable hydrogen/ammonia/air fuels, Energy, 159 (2018) 252-263.
10.1016/j.energy.2018.06.174J. Cheng, B. Zhang, Analysis of explosion and laminar combustion characteristics of premixed ammonia-air/oxygen mixtures, Fuel, 351 (2023) 128860.
10.1016/j.fuel.2023.128860J. Cheng, B. Zhang, Experimental study on the explosion characteristics of ammonia-hydrogen-air mixtures, Fuel, 363 (2024) 131046.
10.1016/j.fuel.2024.131046B. Liang, W. Gao, K. Zhang, Y. Li, Ammonia-air combustion and explosion characteristics at elevated temperature and elevated pressure, Int. J. Hydrogen Energy, 48(53) (2023) 20225-20237.
10.1016/j.ijhydene.2023.03.011N.N. Shohdy, M. Alicherif, D.A. Lacoste, Transfer Functions of Ammonia and Partly Cracked Ammonia Swirl Flames, Energies 16(3) (2023) 1323.
10.3390/en16031323D. Razus, C. Movileanu, V. Brinzea, D. Oancea, Explosion pressures of hydrocarbon-air mixtures in closed vessels, J. Hazard. Mater., 135(1-3) (2006) 58-65.
10.1016/j.jhazmat.2005.10.06116386834C.L. Tang, S. Zhang, Z.B. Si, Z.H. Huang, K.M. Zhang, Z.B. Jin, High methane natural gas/air explosion characteristics in confined vessel, J. Hazard. Mater., 278 (2014) 520-528.
10.1016/j.jhazmat.2014.06.04725010457Y. Xie, J. Wang, X. Cai, Z. Huang, Pressure history in the explosion of moist syngas/air mixtures, Fuel, 185 (2016) 18-25.
10.1016/j.fuel.2016.07.072A. Dahoe, Laminar burning velocities of hydrogen-air mixtures from closed vessel gas explosions, J. Loss Prev. Process Ind., 18(3) (2005) 152-166.
10.1016/j.jlp.2005.03.007A. Savitzky, M.J.E. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Anal. Chem., 36(8) (1964) 1627-1639.
10.1021/ac60214a047K.L. Tseng, M.A. Ismail, G.M. Faeth, Laminar Burning Velocities and Markstein Numbers of Hydrocarbon-Air Flames, Combust. Flame, 95(4) (1993) 410-426.
10.1016/0010-2180(93)90007-PP.D. Ronney, H.Y. Wachman, Effect of gravity on laminar premixed gas combustion I: Flammability limits and burning velocities, Combust. Flame, 62(2) (1985) 107-119.
10.1016/0010-2180(85)90139-7C. Tang, J. He, Z. Huang, C. Jin, J. Wang, X. Wang, Measurements of laminar burning velocities and Markstein lengths of propane-hydrogen-air mixtures at elevated pressures and temperatures, Int. J. Hydrogen Energy, 33(23) (2008) 7274-7285.
10.1016/j.ijhydene.2008.08.053Y. Li, M. Bi, S. Zhang, H. Jiang, B. Gan, W. Gao, Dynamic couplings of hydrogen/air flame morphology and explosion pressure evolution in the spherical chamber, Int. J. Hydrogen Energy, 43(4) (2018) 2503-2513.
10.1016/j.ijhydene.2017.12.044Y. Gong, X. Huang, J. Deng, L. Li, Experimental and numerical study on combustion characteristics of super lean H2-O2 premixed laminar flame in argon atmosphere, Int. J. Hydrogen Energy, 45(41) (2020) 21956-21968.
10.1016/j.ijhydene.2020.05.179H. Li, H. Xiao, J. Sun, Laminar burning velocity, Markstein length, and cellular instability of spherically propagating NH3/H2/Air premixed flames at moderate pressures, Combust. Flame, 241 (2022) 112079.
10.1016/j.combustflame.2022.112079T. Wang, P. Yang, W. Yi, Z. Luo, F. Cheng, X. Ding, X. Kang, Z. Feng, J. Deng, Effect of obstacle shape on the deflagration characteristics of premixed LPG-air mixtures in a closed tube, Process Saf. Environ. Prot., 168 (2022) 248-256.
10.1016/j.psep.2022.09.079D.A. Crowl, Y-D. Jo, The hazards and risks of hydrogen, J. Loss Prev. Process Ind., 20(2) (2007) 158-164.
10.1016/j.jlp.2007.02.002A.S. Huzayyin, H.A. Moneib, M.S. Shehatta, A.M.A. Attia, Laminar burning velocity and explosion index of LPG-air and propane-air mixtures, Fuel, 87(1) (2008) 39-57.
10.1016/j.fuel.2007.04.001A. Di Benedetto, P. Russo, Thermo-kinetic modelling of dust explosions, J. Loss Prev. Process Ind., 20(4-6) (2007) 303-309.
10.1016/j.jlp.2007.04.001M. Gieras, R. Klemens, G. Rarata, P. Wolanski, Determination of explosion parameters of methane- air mixtures in the chamber of 40dm3 at normal and elevated temperature, J. Loss Prev. Process Ind., 19(2-3) (2006) 263-270.
10.1016/j.jlp.2005.05.004- Publisher :The Korean Society of Combustion
- Publisher(Ko) :한국연소학회
- Journal Title :Journal of the Korean Society of Combustion
- Journal Title(Ko) :한국연소학회지
- Volume : 29
- No :2
- Pages :44-53
- Received Date : 2024-05-21
- Revised Date : 2024-06-17
- Accepted Date : 2024-06-17
- DOI :https://doi.org/10.15231/jksc.2024.29.2.044