All Issue

2024 Vol.29, Issue 2 Preview Page

Research Article

30 June 2024. pp. 44-53
Abstract
References
1

T.M. Letcher, Global warming-a complex situation, Climate Change (3rd ed), (2021) 3-17.

10.1016/B978-0-12-821575-3.00001-3
2

United Nations. The Paris Agreement. (2015).

3

L. Kang, W. Pan, J. Zhang, W. Wang, C. Tang, A review on ammonia blends combustion for industrial applications, Fuel, 332 (2023) 126150.

10.1016/j.fuel.2022.126150
4

R.A. Field, R.G. Derwnt, Field RA, Derwent RG. Global warming consequences of replacing natural gas with hydrogen in the domestic energy sectors of future low-carbon economies in the United Kingdom and the United States of America, Int. J. Hydrogen Energy, 46(58) (2021) 30190-30203.

10.1016/j.ijhydene.2021.06.120
5

H.L. Yip, A. Srna, A.C.Y. Yuen, S.H. Kook, R.A. Taylor, G.H. Yeoh, P.R. Medwell, Q.N. Chan, A review of hydrogen direct injection for internal combustion engines: towards carbon-free combustion, Appl. Sci., 9(22) (2019) 4842.

10.3390/app9224842
6

Y.D. Jo, D.A. Crowl, Explosion characteristics of hydrogen-air mixtures in a spherical vessel, Process Saf. Prog., (2010) 216-223.

10.1002/prs.10370
7

C. Tang, Z. Huang, C. Jin, J. He, J. Wang, X. Wang, H. Miao, Explosion characteristics of hydrogen-nitrogen-air mixtures at elevated pressures and temperatures, Int. J. Hydrogen Energy, 34(1) (2009) 554-561.

10.1016/j.ijhydene.2008.10.028
8

M. Comotti, S. Frigo, Hydrogen generation system for ammonia-hydrogen fuelled internal combustion engines, Int. J. Hydrogen Energy, 40(33) (2015) 10673-10686.

10.1016/j.ijhydene.2015.06.080
9

P. Berwal, S. Kumar, B. Khandelwal, A comprehensive review on synthesis, chemical kinetics, and practical application of ammonia as future fuel for combustion, J. Energy Inst., (2021) 273-298.

10.1016/j.joei.2021.10.001
10

A. Valera-Medina, H. Xiao, M. Owen-Jones, W.I.F. David, P.J. Bowen, Ammonia for power, Prog. Energy Combust. Sci., 69 (2018) 63-102.

10.1016/j.pecs.2018.07.001
11

A.A. Khateeb, T.F. Guiberti, X. Zhu, M. Younes, A. Jamal, W.L. Roberts, Stability limits and NO emissions of technically-premixed ammonia-hydrogen-nitrogen-air swirl flames, Int. J. Hydrogen Energy, 45(41) (2020) 22008-22018.

10.1016/j.ijhydene.2020.05.236
12

H. Kobayashi, A. Hayakawa, K.D.K.A. Somarathne, E.C. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst., 37(1) (2019) 109-133.

10.1016/j.proci.2018.09.029
13

F. Verkamp, M. Hardin, J. Williams, Ammonia combustion properties and performance in gas- turbine burners, Proc. Combust. Inst., 11(1) (1967) 985-992.

10.1016/S0082-0784(67)80225-X
14

W.S. Chai, Y. Bao, P. Jin, G. Tang, L. Zhou, A review on ammonia, ammonia-hydrogen and ammonia-methane fuels, Renew. Sustain. Energy Rev., 147 (2021) 111254.

10.1016/j.rser.2021.111254
15

Z. Wang, C. Ji, D. Wang, R. Hou, T. Zhang, S. Wang, Experimental and numerical study on premixed partially dissociated ammonia mixtures. Part II: Numerical study of premixed combustion characteristics, Fuel, 306 (2021) 121660.

10.1016/j.fuel.2021.121660
16

Y.C. Li, M.S. Bi, B. Li, Y.H. Zhou, L. Huang, W. Gao, Explosion hazard evaluation of renewable hydrogen/ammonia/air fuels, Energy, 159 (2018) 252-263.

10.1016/j.energy.2018.06.174
17

J. Cheng, B. Zhang, Analysis of explosion and laminar combustion characteristics of premixed ammonia-air/oxygen mixtures, Fuel, 351 (2023) 128860.

10.1016/j.fuel.2023.128860
18

J. Cheng, B. Zhang, Experimental study on the explosion characteristics of ammonia-hydrogen-air mixtures, Fuel, 363 (2024) 131046.

10.1016/j.fuel.2024.131046
19

B. Liang, W. Gao, K. Zhang, Y. Li, Ammonia-air combustion and explosion characteristics at elevated temperature and elevated pressure, Int. J. Hydrogen Energy, 48(53) (2023) 20225-20237.

10.1016/j.ijhydene.2023.03.011
20

N.N. Shohdy, M. Alicherif, D.A. Lacoste, Transfer Functions of Ammonia and Partly Cracked Ammonia Swirl Flames, Energies 16(3) (2023) 1323.

10.3390/en16031323
21

D. Razus, C. Movileanu, V. Brinzea, D. Oancea, Explosion pressures of hydrocarbon-air mixtures in closed vessels, J. Hazard. Mater., 135(1-3) (2006) 58-65.

10.1016/j.jhazmat.2005.10.06116386834
22

C.L. Tang, S. Zhang, Z.B. Si, Z.H. Huang, K.M. Zhang, Z.B. Jin, High methane natural gas/air explosion characteristics in confined vessel, J. Hazard. Mater., 278 (2014) 520-528.

10.1016/j.jhazmat.2014.06.04725010457
23

Y. Xie, J. Wang, X. Cai, Z. Huang, Pressure history in the explosion of moist syngas/air mixtures, Fuel, 185 (2016) 18-25.

10.1016/j.fuel.2016.07.072
24

A. Dahoe, Laminar burning velocities of hydrogen-air mixtures from closed vessel gas explosions, J. Loss Prev. Process Ind., 18(3) (2005) 152-166.

10.1016/j.jlp.2005.03.007
25

A. Savitzky, M.J.E. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Anal. Chem., 36(8) (1964) 1627-1639.

10.1021/ac60214a047
26

K.L. Tseng, M.A. Ismail, G.M. Faeth, Laminar Burning Velocities and Markstein Numbers of Hydrocarbon-Air Flames, Combust. Flame, 95(4) (1993) 410-426.

10.1016/0010-2180(93)90007-P
27

P.D. Ronney, H.Y. Wachman, Effect of gravity on laminar premixed gas combustion I: Flammability limits and burning velocities, Combust. Flame, 62(2) (1985) 107-119.

10.1016/0010-2180(85)90139-7
28

C. Tang, J. He, Z. Huang, C. Jin, J. Wang, X. Wang, Measurements of laminar burning velocities and Markstein lengths of propane-hydrogen-air mixtures at elevated pressures and temperatures, Int. J. Hydrogen Energy, 33(23) (2008) 7274-7285.

10.1016/j.ijhydene.2008.08.053
29

Y. Li, M. Bi, S. Zhang, H. Jiang, B. Gan, W. Gao, Dynamic couplings of hydrogen/air flame morphology and explosion pressure evolution in the spherical chamber, Int. J. Hydrogen Energy, 43(4) (2018) 2503-2513.

10.1016/j.ijhydene.2017.12.044
30

Y. Gong, X. Huang, J. Deng, L. Li, Experimental and numerical study on combustion characteristics of super lean H2-O2 premixed laminar flame in argon atmosphere, Int. J. Hydrogen Energy, 45(41) (2020) 21956-21968.

10.1016/j.ijhydene.2020.05.179
31

H. Li, H. Xiao, J. Sun, Laminar burning velocity, Markstein length, and cellular instability of spherically propagating NH3/H2/Air premixed flames at moderate pressures, Combust. Flame, 241 (2022) 112079.

10.1016/j.combustflame.2022.112079
32

T. Wang, P. Yang, W. Yi, Z. Luo, F. Cheng, X. Ding, X. Kang, Z. Feng, J. Deng, Effect of obstacle shape on the deflagration characteristics of premixed LPG-air mixtures in a closed tube, Process Saf. Environ. Prot., 168 (2022) 248-256.

10.1016/j.psep.2022.09.079
33

D.A. Crowl, Y-D. Jo, The hazards and risks of hydrogen, J. Loss Prev. Process Ind., 20(2) (2007) 158-164.

10.1016/j.jlp.2007.02.002
34

A.S. Huzayyin, H.A. Moneib, M.S. Shehatta, A.M.A. Attia, Laminar burning velocity and explosion index of LPG-air and propane-air mixtures, Fuel, 87(1) (2008) 39-57.

10.1016/j.fuel.2007.04.001
35

A. Di Benedetto, P. Russo, Thermo-kinetic modelling of dust explosions, J. Loss Prev. Process Ind., 20(4-6) (2007) 303-309.

10.1016/j.jlp.2007.04.001
36

M. Gieras, R. Klemens, G. Rarata, P. Wolanski, Determination of explosion parameters of methane- air mixtures in the chamber of 40dm3 at normal and elevated temperature, J. Loss Prev. Process Ind., 19(2-3) (2006) 263-270.

10.1016/j.jlp.2005.05.004
37

C. Tang, Z. Huang, C. Jin, J. He, J. Wang, X. Wang, H. Miao, Explosion characteristics of hydrogen- nitrogen-air mixtures at elevated pressures and temperatures, Int. J. Hydrogen Energy, 34(1) (2009) 554-561.

10.1016/j.ijhydene.2008.10.028
38

Y. Leo, B. Zhang, Explosion behavior of methane-air mixtures and Rayleigh-Taylor instability in the explosion process near the flammability limits, Fuel, 324 (2022) 124730.

10.1016/j.fuel.2022.124730
Information
  • Publisher :The Korean Society of Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of the Korean Society of Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 29
  • No :2
  • Pages :44-53
  • Received Date : 2024-05-21
  • Revised Date : 2024-06-17
  • Accepted Date : 2024-06-17