All Issue

2023 Vol.28, Issue 3 Preview Page

Research Article

30 September 2023. pp. 11-19
Abstract
References
1
J. Beita, M. Talibi, S. Sadasivuni, R. Balachandran, Thermoacoustic instability considerations for high hydrogen combustion in lean premixed gas turbine combustor, Hydrogen, 2 (2021), 33-57. 10.3390/hydrogen2010003
2
D. Kim, Review on the Development Trend of Hydrogen Gas Turbine Combustion Technology, J. Korean Soc. Combust. 24(4) (2019), 1-10. 10.15231/jksc.2019.24.4.001
3
B. Noble, L. Angello, B. Emerson, T. Lieuwen, Advanced gas turbine combustor health monitoring using combustion dynamics data, high pressure condition, 59th ISA POWID/EPRI Symposium (2016).
4
J. Oh, Y. Yoon, Combustion Instability in Gas Turbine Engines, J. Korean Soc. Propulsion Engineers, 12(4) (2008), 63-77.
5
S. Joo, J. Choi, M. Lee, N. Kim, Prognosis of combustion instability in a gas turbine combustor using spectral centroid & spread, Energy, 224 (2021), 120180. 10.1016/j.energy.2021.120180
6
W. Song, D. Cha, Temporal kurtosis of dynamic pressure signal as a quantitative measure of combustion instability, Appl. Therm. Eng. 104 (2016), 577-586. 10.1016/j.applthermaleng.2016.05.094
7
W. Song, D. Cha, Combustion Instability Assessment Using Temporal Kurtosis of Dynamic Pressure Data, The 48th KOSCO Symposium, (2014), 39-41.
8
S. Choi, J. Baek, D. Kim, Early Diagnosis of Combustion Instability Using Statistical Methods, J. Korean Soc. Combust. 27(3) (2022), 1-7. 10.15231/jksc.2022.27.3.001
9
S. Joo, J. Choi, N. Kim, M. Lee, Zero-crossing rate method as an efficient tool for combustion instability diagnosis, Exp. Therm Fluid Sci. 123 (2021), 110340. 10.1016/j.expthermflusci.2020.110340
10
B. Jun, D. Jang, M. Lee, Combustion instability diagnosis using machine learning methodology of high-speed flame images for the safe operation of a gas turbine combustor, Trans. Korean Soc. Mech. Eng. B 45 (2021), 447-458. 10.3795/KSME-B.2021.45.8.447
11
T. Gangopadhyay, V. Ramanan, A. Akintayo, P.K. Boor, S. Sarkar, S.R. Chakravarthy, S. Sarkar, 3D convolutional selective autoencoder for instability detection in combustion systems, Energy and AI 4 (2021), 100067. 10.1016/j.egyai.2021.100067
12
G. Dong, G. Liao, H. Liu, G. Kuang, A review of the autoencoder and its variants: A comparative perspective from target recognition in synthetic-aperture radar images, IEEE GEOSCI REMOTE M 6 (2018), 44-68. 10.1109/MGRS.2018.2853555
13
C. Fan, F. Xiao, Y. Zhao, J. Wang, Analytical investigation of autoencoder based methoeds for unsupervised anomaly detetion in building energy data, Applied Energy 211 (2018), 1123-1135. 10.1016/j.apenergy.2017.12.005
14
G. Lee, M. Jung, M. Song, J. Choo, Unsupervised anomaly detection of the gas turbine operation via convolutional auto-encoder, 2020 IEEE International Conference on Prognostics and Health Management (2020), 19950224. 10.1109/ICPHM49022.2020.9187054
15
F. Fleurt, François Fleuret's deep-learning courses 14x050, the University of Geneva, Switzerland, Available at https://fleuret.org/francois/
16
C. Lee, S. Lee, P. Kim, Fault detection and diagnosis of chain transmission system using convolutional auto-encoder, Trans. the KSNVE 31 (2021), 563-573. 10.5050/KSNVE.2021.31.5.563
17
J. An, S. Cho, Variational autoencoder based anomaly detection using reconstruction probability, SNU Data Mining Center (2015).
18
Tensorflow 2.9.1, Available at https://www.tensorflow.org.
19
S. Joo, S. Kwak, S. Kim, J. Lee, Y. Yoon, High-frequency transition characteristics of synthetic natural gas combustion in gas turbine, Aeronaut. J. 123 (2019), 138-156. 10.1017/aer.2018.150
Information
  • Publisher :The Korean Society of Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of the Korean Society of Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 28
  • No :3
  • Pages :11-19
  • Received Date : 2023-03-28
  • Revised Date : 2023-04-14
  • Accepted Date : 2023-08-14