All Issue

2024 Vol.29, Issue 3 Preview Page

Research Article

30 September 2024. pp. 42-52
Abstract
References
1

Development of carbon-free eco-friendly ammonia power generation technology, KEPRI Workshop, 2024.

2

T. Ito, H. Ishii, J. Zhang, S. Ishihara, T. Suda, New Technology of the Ammonia Co-Firing with Pulverized Coal to Reduce the NOx Emission, 2019 AIChE Annual Meeting.

3

N. Genichiro, I. Hiroki, I. Takamasa, O. Emi, O. Yoshitomo, Development of Co-Firing Method of Pulverized Coal and Ammonia to Reduce Greenhouse Gas Emissions, IHI Engineering Review Vol 53, No. 1, 2020.

4

M. Iijima, M. Susaki, H. Furuichi, T. Yonekawa, N. Senba, H. Nagayasu, CO2-Free Energy (Ammonia), Mitsubishi Heavy Industries Technical Review Vol. 56 No. 1 (March 2019).

5

T. Yamashita, T. Amari, Y. Urakata, T. Sumida, T. Okazaki, A. Takayama, Development of Ammonia Co-firing Technology for Coal-fired Boilers toward Decarbonized Society, Mitsubishi Heavy Industries Technical Review Vol. 59 No. 4 (December 2022).

6

A. Hayakawa, T. Goto, R. Mimoto, T. Kudo and H. Kobayashi, NO formation/reduction mechanisms of ammonia/air premixed flames at various equivalence ratios and pressures, JSME, 2015.

10.1299/mej.14-00402
7

A. Hayakawa, Ta. Goto, R. Mimoto, Y. Arakawa, T. Kudo, Hideaki Kobayashi, Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures, Fuel 159 (2015) 98-106.

10.1016/j.fuel.2015.06.070
8

A. Ichikawa, A. Hayakawa, Y. Kitagawa, K.D. Kunkuma, A. Somarathne, T. Kudo, H. Kobayashi, Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures, Int. J. Hydrogen Energy 40 (2015) 9570- 9578.

10.1016/j.ijhydene.2015.04.024
9

J.M. Joo, S. Lee, O.C. Kwon, Effects of ammonia substitution on combustion stability limits and NOx emissions of premixed hydrogen air flames, Int. J. Hydrogen Energy 37 (2012) 6933-6941.

10.1016/j.ijhydene.2012.01.059
10

S. Choi, S. Lee, O. C. Kwon, Extinction limits and structure of counterflow nonpremixed hydrogen- doped ammonia/air flames at elevated temperatures, Energy 85 (2015) 503-510.

10.1016/j.energy.2015.03.061
11

J. Li, H. Huang, N. Kobayashi, Z. He, Y. Osaka, T. Zeng, Numerical study on effect of oxygen content in combustion air on ammonia combustion, Energy 93 (2015) 2053-2068.

10.1016/j.energy.2015.10.060
12

M. Tamura, T. Goto, H. Ishii, D. Riechelmann, Experimental investigation of ammonia combustion in a bench scale 1.2 MW-thermal pulverised coal firing furnace, Appl. Energy 277 (2020) 115580.

10.1016/j.apenergy.2020.115580
13

M. Tamura, S. Watanabe, K. Komaba, K. Okazaki, Combustion behaviour of pulverised coal in high temperature air condition for utility boilers, Appl. Therm. Eng. 75 (2015) 445-450.

10.1016/j.applthermaleng.2014.09.059
14

D. Hong, L. Yuan, C. Wang, Competition between NH3-O2 reaction and char-O2 reaction and its influence on NO generation and reduction during char/NH3 Co-combustion: reactive molecular dynamic simulations, Fuel 324 (2022) 124666.

10.1016/j.fuel.2022.124666
15

J.Y. Yuan, P.P. Wang, C.J. Ruan, X.Y. Huang, Study on Co-firing characteristics of NH3 and coal in the main burning zone of the coal staged combustion, J. Phys. Conf. Ser. 2208 (2022) 012016.

10.1088/1742-6596/2208/1/012016
16

K. Li , L. Cheng, X. Zhao , B. Wang , Q. Zhang , L. Zhu , Q. Kang , Z. Ma, Experimental study of NH3 and coal Co-firing in a CFB and its nitrogen conversion, Energy 304 (2024) 132156.

10.1016/j.energy.2024.132156
17

V.J. Wargadalam, G. Loffler, F. Winter, H. Hofbauer, Homogeneous Formation of NO and N2O from the oxidation of HCN and NH3 at 600-1000℃, Combust. Flame 120 (2000) 465-478.

10.1016/S0010-2180(99)00107-8
18

E. Lee, S. Keel, M. Kim, H. Jegal, J. Yun, J. Chi, S. Baek, J. Lee, M. Jeon, Behavior of nitrogen oxides in a lab-scale coal ammonia co-firing system, J. Energy Inst. 107 (2023) 101174.

10.1016/j.joei.2023.101174
19

M. Jeon, E. Lee, M. Kim, H. Jegal, S. Park, J.Chi, S. Baek, J. Lee, S. Keel, Nitric oxide (NO) and nitrous oxide (N2O) emissions during selective non-catalytic reduction and selective catalytic reduction processes in a pulverized coal/Ammonia Co-fired boiler, J. Environ. Chem. Eng. 11 (2023) 109398.

10.1016/j.jece.2023.109398
20

B.X. Shen, T. Mi, D.C. Liu, B. Feng, Q. Yao, F. Winter, N2O emission under fluidized bed combustion condition, Fuel Process. Technol. 84 (2003) 13-21.

10.1016/S0378-3820(02)00104-2
21

C.J. Tullin, S. Goel, A. Morihara, A.F. Sarofim, J.M. Beer, Nitrogen oxide (NO and N2O) formation for coal combustion in a fluidized bed: Effect of carbon conversion and bed temperature, Energy Fuels 7 (1993) 796-802.

10.1021/ef00042a015
22

J.W. Yuan, B. Feng, J. Liu, H. Liu, D. Liu, Effects of NH3 on N2O formation and destruction in fluidized bed coal combustion, J. Therm. Sci. 3 (1994) 278-282.

10.1007/BF02653140
Information
  • Publisher :The Korean Society of Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of the Korean Society of Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 29
  • No :3
  • Pages :42-52
  • Received Date : 2024-09-04
  • Revised Date : 2024-09-06
  • Accepted Date : 2024-09-07