Technical Notes
M. Salman, G. Wang, L. Qin, X. He, G20 roadmap for carbon neutrality: The role of Paris agreement, artificial intelligence, and energy transition in changing geopolitical landscape, J. Environ. Manage., 367 (2024) 122080.
10.1016/j.jenvman.2024.12208039111003탄소중립 녹색성장 국가전략 및 제1차 국가 기본계획, Available at: <https://https://www.gihoo.or.kr/menu.es?mid=a30201000000>, 2023.
J. Humphreys, R. Lan, S. Tao, Development and recent progress on ammonia synthesis catalysts for Haber-Bosch process, Adv. Energy Sustainability Res., 2(1) (2021) 2000043.
10.1002/aesr.202000043L. Wang, M. Xia, H. Wang, K. Huang, C. Qian, C.T. Maravelias, G.A. Ozin, Greening ammonia toward the solar ammonia refinery, Joule, 2(6) (2018) 1055-1074.
10.1016/j.joule.2018.04.017S. Gubbi, R. Cole, B. Emerson, D. Noble, R. Steele, W. Sun, T. Lieuwen, Evaluation of minimum NOx emission from ammonia combustion, J. Eng. Gas Turbines Power, 146(3) (2024) 031023.
10.1115/1.4064219T. Lee, H. Bai, Byproduct analysis of SO2 poisoning on NH3-SCR over MnFe/TiO2 catalysts at medium to low temperatures, Catalysts, 9(3) (2019) 265.
10.3390/catal9030265W. Ai, J. Wang, J. Wen, S. Wang, W. Tan, Z. Zhang, K. Liang, R. Zhang, W. Li, Research landscape and hotspots of selective catalytic reduction (SCR) for NOx removal: insights from a comprehensive bibliometric analysis, Environ. Sci. Pollut. Res., 30(24) (2023) 65482-65499.
10.1007/s11356-023-26993-437081369Z. Chen, Q. Liu, H. Liu, T. Wang, Recent Advances in SCR Systems of Heavy-Duty Diesel Vehicles-Low-Temperature NOx Reduction Technology and Combination of SCR with Remote OBD. Atmosphere, 15(8) (2024) 997.
10.3390/atmos15080997A.M. Elbaz, S. Wang, T.F. Guiberti, W.L. Roberts, Review on the recent advances on ammonia combustion from the fundamentals to the applications, Fuel Commun., 10 (2022) 100053.
10.1016/j.jfueco.2022.100053H. Kobayashi, A. Hayakawa, K.D.K.A. Somarathne, E.C. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst., 37(1) (2019) 109-133.
10.1016/j.proci.2018.09.029A. Valera-Medina, H. Xiao, M. Owen-Jones, W.I.F. David, P.J. Bowen, Ammonia for power, Prog. Energy Combust. Sci., 69 (2018) 63-102.
10.1016/j.pecs.2018.07.001A. Ichikawa, A. Hayakawa, Y. Kitagawa, K.D.K.A. Somarathne, T. Kudo, and H. Kobayashi, Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures, Int. J. Hydrogen Energy, 40(30) (2015) 9570-9578.
10.1016/j.ijhydene.2015.04.024G.B. Ariemma, G. Sorrentino, R. Ragucci, M. de Joannon, P. Sabia, Ammonia/Methane combustion: Stability and NOx emissions, Combust. Flame, 241 (2022) 112071.
10.1016/j.combustflame.2022.112071J. Sun, Q. Yang, N. Zhao, M. Chen, H. Zheng, Numerically study of CH4/NH3 combustion characteristics in an industrial gas turbine combustor based on a reduced mechanism, Fuel, 327 (2022) 124897.
10.1016/j.fuel.2022.124897N.A. Hussein, A. Valera-Medina, A.S. Alsaegh, Ammonia-hydrogen combustion in a swirl burner with reduction of NOx emissions, Energy Procedia, 158 (2019) 2305-2310.
10.1016/j.egypro.2019.01.265N. Yao, W. Pan, J. Zhang, L. Wei, The advancement on carbon-free ammonia fuels for gas turbine: A review, Energy Convers. Manage., 315 (2024) 118745.
10.1016/j.enconman.2024.118745F. Ma, L. Guo, Z. Li, X. Zeng, Z. Zheng, W. Li, F. Zhao, W. Yu, A review of current advances in ammonia combustion from the fundamentals to applications in internal combustion engines, Energies, 16(17) (2023) 6304.
10.3390/en16176304P. Dagaut, P. Glarborg, M.U. Alzueta, The oxidation of hydrogen cyanide and related chemistry, Prog. Energy Combust. Sci., 34(1) (2008) 1-46.
10.1016/j.pecs.2007.02.004P. Glarborg, J.A. Miller, B. Ruscic, S.J. Klippenstein, Modeling nitrogen chemistry in combustion, Prog. Energy Combust., 67 (2018) 31-68.
10.1016/j.pecs.2018.01.002J.A. Miller, C.T. Bowman, Mechanism and modeling of nitrogen chemistry in combustion, Prog. Energy Combust., 15(4) (1989) 287-338.
10.1016/0360-1285(89)90017-8R.P. Lindstedt, F.C. Lockwood, M.A. Selim, Detailed kinetic modelling of chemistry and temperature effects on ammonia oxidation, Combust. Sci. Technol., 99(4-6) (1994) 253-276.
10.1080/00102209408935436J.A. Miller, P. Glarborg, Modeling the thermal De-NOx process: Closing in on a final solution, Int. J. Chem. Kinet., 31(11) (1999) 757-765.
10.1002/(SICI)1097-4601(1999)31:11<757::AID-JCK1>3.0.CO;2-VG.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr., V.V. Lissianski, Z. Qin, GRI-mech 3.0, Available at: <http://www.me.berkeley.edu/gri_ mech/>, 1999.
A.A. Konnov, Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism, Combust. Flame, 156(11) (2009) 2093-2105.
10.1016/j.combustflame.2009.03.016Z. Tian, Y. Li, L. Zhang, P. Glarborg, F. Qi, An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure, Combust. Flame, 156(7) (2009) 1413-1426.
10.1016/j.combustflame.2009.03.005S.J. Klippenstein, L.B. Harding, P. Glarborg, J.A. Miller, The role of NNH in NO formation and control, Combust. Flame, 158(4) (2011) 774-789.
10.1016/j.combustflame.2010.12.013C. Duynslaegher, F. Contino, J. Vandooren, H. Jeanmart, Modeling of ammonia combustion at low pressure, Combust. Flame, 159(9) (2012) 2799-2805.
10.1016/j.combustflame.2012.06.003H. Nozari and A. Karabeyoğlu, Numerical study of combustion characteristics of ammonia as a renewable fuel and establishment of reduced reaction mechanisms, Fuel, 159 (2015), 223-233.
10.1016/j.fuel.2015.06.075O. Mathieu, E.L. Petersen, Experimental and modeling study on the high-temperature oxidation of Ammonia and related NOx chemistry, Combust. Flame, 162(3) (2015), 554-570.
10.1016/j.combustflame.2014.08.022N. Lamoureux, H.El. Merhubi, L. Pillier, S. de Persis, P. Desgroux, Modeling of NO formation in low pressure premixed flames, Combust. Flame, 163 (2016) 557-575.
10.1016/j.combustflame.2015.11.007Y. Song, H. Hashemi, J.M. Christensen, C. Zou, P. Marshall, P. Glarborg, Ammonia oxidation at high pressure and intermediate temperatures, Fuel, 181 (2016) 358-365.
10.1016/j.fuel.2016.04.100H. Nakamura, S. Hasegawa, T. Tezuka, Kinetic modeling of ammonia/air weak flames in a micro flow reactor with a controlled temperature profile, Combust. Flame, 185 (2017) 16-27.
10.1016/j.combustflame.2017.06.021J. Otomo, M. Koshi, T. Mitsumori, H. Iwasaki, K. Yamada, Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion, Int. J. Hydrogen Energy, 43(5) (2018) 3004-3014.
10.1016/j.ijhydene.2017.12.066R. Li, A.A. Konnov, G. He, F. Qin, D. Zhang, Chemical mechanism development and reduction for combustion of NH3/H2/CH4 mixtures, Fuel, 257 (2019) 116059.
10.1016/j.fuel.2019.116059Y. Li, C.-W. Zhou, K.P. Somers, K. Zhang, H.J. Curran, The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene, Proc. Combust. Inst., 36(1) (2017) 403-411.
10.1016/j.proci.2016.05.052K.P. Shrestha, L. Seidel, T. Zeuch, F. Mauss, Detailed kinetic mechanism for the oxidation of ammonia including the formation and reduction of nitrogen oxides, Energy Fuels, 32 (2018) 10202-10217.
10.1021/acs.energyfuels.8b01056E.C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, H. Kobayashi, Experimental and numerical study of the laminar burning velocity of CH4?NH3?air premixed flames, Combust. Flame, 187 (2018) 185-198.
10.1016/j.combustflame.2017.09.002E.C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, H. Kobayashi, Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism, Combust. Flame, 204 (2019) 162-175.
10.1016/j.combustflame.2019.03.008K.P. Shrestha, C. Lhuillier, A.A. Barbosa, P. Brequigny, F. Contino, C. Mounaïm-Rousselle, L. Seidel, F. Mauss, An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature, Proc. Combust. Inst., 38(2) (2021) 2163-2174.
10.1016/j.proci.2020.06.197X. Han, Z. Wang, Y. He, Y. Zhu, K. Cen, Experimental and kinetic modeling study of laminar burning velocities of NH3/syngas/air premixed flames, Combust. Flame, 213 (2020) 1-13.
10.1016/j.combustflame.2019.11.032X. Zhang, S.P. Moosakutty, R.P. Rajan, M. Younes, S.M. Sarathy, Combustion chemistry of ammonia/hydrogen mixtures: Jet-stirred reactor measurements and comprehensive kinetic modeling, Combust. Flame, 234 (2021) 111653.
10.1016/j.combustflame.2021.111653B. Mei, J. Zhang, X. Shi, Z. Xi, Y. Li, Enhancement of ammonia combustion with partial fuel cracking strategy: Laminar flame propagation and kinetic modeling investigation of NH3/H2/N2/air mixtures up to 10 atm, Combusti. Flame, 231 (2021) 111472.
10.1016/j.combustflame.2021.111472A. Bertolino, M. Fürst, A. Stagni, A. Frassoldati, M. Pelucchi, C. Cavallotti, T. Faravelli, A. Parente, An evolutionary, data-driven approach for mechanism optimization: theory and application to ammonia combustion, Combust. Flame, 229 (2021) 111366.
10.1016/j.combustflame.2021.02.012G.J. Gotama, A. Hayakawa, E.C. Okafor, R. Kanoshima, M. Hayashi, T. Kudo, H. Kobayashi, Measurement of the laminar burning velocity and kinetics study of the importance of the hydrogen recovery mechanism of ammonia/hydrogen/air premixed flames, Combust. Flame, 236 (2022) 111753.
10.1016/j.combustflame.2021.111753M.V. Manna, P. Sabia, K.P. Shrestha, L. Seidel, R. Ragucci, F. Mauss, M. de Joannon, NH3NO interaction at low-temperatures: an experimental and modeling study, Proc. Combust. Inst., 39(1) (2023) 775-784.
10.1016/j.proci.2022.09.027S. Zhou, W. Yang, S. Zheng, S. Yu, H. Tan, B. Cui, J. Wang, S. Deng, X. Wang, An experimental and kinetic modeling study on the low and intermediate temperatures oxidation of NH3/O2/Ar, NH3/H2/O2/Ar, NH3/CO/O2/Ar, and NH3/CH4/O2/Ar mixtures in a jet-stirred reactor, Combust. Flame, 248 (2023) 112529.
10.1016/j.combustflame.2022.112529S. Zhou, B. Cui, W. Yang, H. Tan, J. Wang, H. Dai, L. Li, Z. ur Rahman, X. Wang, S. Deng, X. Wang, An experimental and kinetic modeling study on NH3/air, NH3/H2/air, NH3/CO/air, and NH3/CH4/air premixed laminar flames at elevated temperature, Combust. Flame, 248 (2023) 112536.
10.1016/j.combustflame.2022.112536P. Marshall, P. Glarborg P. Probing high-temperature amine chemistry: is the reaction NH3 + NH2 ⇄ N2H3 + H2 important?, J. Phys. Chem. A, 127(11) (2023) 2601-2607.
10.1021/acs.jpca.2c0892136916833B. Liu, Z. Zhang, S. Yang, F. Yu, B.Y. Belal, G. Li, Experimental and chemical kinetic study for the combustion of ammonia-hydrogen mixtures, Fuel, 371 (2024) 131850.
10.1016/j.fuel.2024.131850T. Rutar, P.C. Malte, Formation in High-Pressure Jet-Stirred Reactors With Significance to Lean-Premixed Combustion Turbines, J. Eng. Gas Turbines Power, 124(4) (2002) 776-783.
10.1115/1.1492829B. Mei, X. Zhang, S. Ma, M. Cui, H. Guo, Z. Cao, Y. Li, Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions, Combust. Flame, 210 (2019) 236-246.
10.1016/j.combustflame.2019.08.033B. Mei, S. Ma, Y. Zhang, X. Zhang, W. Li, Y. Li, Exploration on laminar flame propagation of ammonia and syngas mixtures up to 10 atm, Combust. Flame, 220 (2020) 368-377.
10.1016/j.combustflame.2020.07.011S. Zhou, W. Yang, H. Tan, Q. An, J. Wang, H. Dai, X. Wang, X. Wang, S. Deng, Experimental and kinetic modeling study on NH3/syngas/air and NH3/bio-syngas/air premixed laminar flames at elevated temperature, Combust. Flame, 233 (2021) 111594.
10.1016/j.combustflame.2021.111594J.E. Dove and W.S. Nip, A shock-tube study of ammonia pyrolysis, Can. J. Chem., 57(6) (1979) 689-701.
10.1139/v79-112A.A Konnov and J. De Ruyck, Kinetic modeling of the thermal decomposition of ammonia, Combust. Sci. Technol., 152 (2000) 23-37.
10.1080/00102200008952125C.W. Zhou, Y. Li, U. Burke, C. Banyon, K.P. Somers, S. Ding, S. Khan, J.W. Hargis, T. Sikes, O. Mathieu, E.L. Petersen, M. AlAbbad, A. Farooq, Y. Pan, Y. Zhang, Z. Huang, J. Lopez, Z. Loparo, S.S. Vasu, H.J. Curran, An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: Ignition delay time and laminar flame speed measurements, Combust. Flame, 197 (2018) 423-438.
10.1016/j.combustflame.2018.08.006S. Park, Pressure effect on NO emission in methane/air lean-premixed flames, J. Mech. Sci. Technol., 33 (2019) 3031-3038.
10.1007/s12206-019-0553-1S. Park, Hydrogen addition effect on NO formation in methane/air lean-premixed flames at elevated pressure, Int. J. Hydrogen Energy, 46(50) (2021) 25712-25725.
10.1016/j.ijhydene.2021.05.101C. Lhuillier, P. Brequigny, N. Lamoureux, F. Contino, C. Mounaïm-Rousselle, Experimental investigation on laminar burning velocities of ammonia/hydrogen/air mixtures at elevated temperatures, Fuel, 263 (2020) 116653.
10.1016/j.fuel.2019.116653J. Chen, X. Jiang, X. Qin, Z. Huang, Effect of hydrogen blending on the high temperature auto-ignition of ammonia at elevated pressure, Fuel, 287 (2021) 119563.
10.1016/j.fuel.2020.119563A. Hayakawa, Y. Arakawa, R. Mimoto, K.D.K.A. Somarathne, T. Kudo, H. Kobayashi, Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor, Int. J. Hydrogen Energy, 42(19) (2017) 14010-14018.
10.1016/j.ijhydene.2017.01.046- Publisher :The Korean Society of Combustion
- Publisher(Ko) :한국연소학회
- Journal Title :Journal of the Korean Society of Combustion
- Journal Title(Ko) :한국연소학회지
- Volume : 30
- No :1
- Pages :18-31
- Received Date : 2024-11-22
- Revised Date : 2025-01-07
- Accepted Date : 2025-01-07
- DOI :https://doi.org/10.15231/jksc.2025.30.1.018