All Issue

2025 Vol.30, Issue 1 Preview Page

Technical Notes

31 March 2025. pp. 18-31
Abstract
References
1

M. Salman, G. Wang, L. Qin, X. He, G20 roadmap for carbon neutrality: The role of Paris agreement, artificial intelligence, and energy transition in changing geopolitical landscape, J. Environ. Manage., 367 (2024) 122080.

10.1016/j.jenvman.2024.12208039111003
2

United Nations, The Paris Agreement, 2015.

3

탄소중립 녹색성장 국가전략 및 제1차 국가 기본계획, Available at: <https://https://www.gihoo.or.kr/menu.es?mid=a30201000000>, 2023.

4

J. Humphreys, R. Lan, S. Tao, Development and recent progress on ammonia synthesis catalysts for Haber-Bosch process, Adv. Energy Sustainability Res., 2(1) (2021) 2000043.

10.1002/aesr.202000043
5

L. Wang, M. Xia, H. Wang, K. Huang, C. Qian, C.T. Maravelias, G.A. Ozin, Greening ammonia toward the solar ammonia refinery, Joule, 2(6) (2018) 1055-1074.

10.1016/j.joule.2018.04.017
6

S. Gubbi, R. Cole, B. Emerson, D. Noble, R. Steele, W. Sun, T. Lieuwen, Evaluation of minimum NOx emission from ammonia combustion, J. Eng. Gas Turbines Power, 146(3) (2024) 031023.

10.1115/1.4064219
7

T. Lee, H. Bai, Byproduct analysis of SO2 poisoning on NH3-SCR over MnFe/TiO2 catalysts at medium to low temperatures, Catalysts, 9(3) (2019) 265.

10.3390/catal9030265
8

W. Ai, J. Wang, J. Wen, S. Wang, W. Tan, Z. Zhang, K. Liang, R. Zhang, W. Li, Research landscape and hotspots of selective catalytic reduction (SCR) for NOx removal: insights from a comprehensive bibliometric analysis, Environ. Sci. Pollut. Res., 30(24) (2023) 65482-65499.

10.1007/s11356-023-26993-437081369
9

Z. Chen, Q. Liu, H. Liu, T. Wang, Recent Advances in SCR Systems of Heavy-Duty Diesel Vehicles-Low-Temperature NOx Reduction Technology and Combination of SCR with Remote OBD. Atmosphere, 15(8) (2024) 997.

10.3390/atmos15080997
10

A.M. Elbaz, S. Wang, T.F. Guiberti, W.L. Roberts, Review on the recent advances on ammonia combustion from the fundamentals to the applications, Fuel Commun., 10 (2022) 100053.

10.1016/j.jfueco.2022.100053
11

H. Kobayashi, A. Hayakawa, K.D.K.A. Somarathne, E.C. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst., 37(1) (2019) 109-133.

10.1016/j.proci.2018.09.029
12

A. Valera-Medina, H. Xiao, M. Owen-Jones, W.I.F. David, P.J. Bowen, Ammonia for power, Prog. Energy Combust. Sci., 69 (2018) 63-102.

10.1016/j.pecs.2018.07.001
13

A. Ichikawa, A. Hayakawa, Y. Kitagawa, K.D.K.A. Somarathne, T. Kudo, and H. Kobayashi, Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures, Int. J. Hydrogen Energy, 40(30) (2015) 9570-9578.

10.1016/j.ijhydene.2015.04.024
14

G.B. Ariemma, G. Sorrentino, R. Ragucci, M. de Joannon, P. Sabia, Ammonia/Methane combustion: Stability and NOx emissions, Combust. Flame, 241 (2022) 112071.

10.1016/j.combustflame.2022.112071
15

J. Sun, Q. Yang, N. Zhao, M. Chen, H. Zheng, Numerically study of CH4/NH3 combustion characteristics in an industrial gas turbine combustor based on a reduced mechanism, Fuel, 327 (2022) 124897.

10.1016/j.fuel.2022.124897
16

N.A. Hussein, A. Valera-Medina, A.S. Alsaegh, Ammonia-hydrogen combustion in a swirl burner with reduction of NOx emissions, Energy Procedia, 158 (2019) 2305-2310.

10.1016/j.egypro.2019.01.265
17

N. Yao, W. Pan, J. Zhang, L. Wei, The advancement on carbon-free ammonia fuels for gas turbine: A review, Energy Convers. Manage., 315 (2024) 118745.

10.1016/j.enconman.2024.118745
18

F. Ma, L. Guo, Z. Li, X. Zeng, Z. Zheng, W. Li, F. Zhao, W. Yu, A review of current advances in ammonia combustion from the fundamentals to applications in internal combustion engines, Energies, 16(17) (2023) 6304.

10.3390/en16176304
19

P. Dagaut, P. Glarborg, M.U. Alzueta, The oxidation of hydrogen cyanide and related chemistry, Prog. Energy Combust. Sci., 34(1) (2008) 1-46.

10.1016/j.pecs.2007.02.004
20

P. Glarborg, J.A. Miller, B. Ruscic, S.J. Klippenstein, Modeling nitrogen chemistry in combustion, Prog. Energy Combust., 67 (2018) 31-68.

10.1016/j.pecs.2018.01.002
21

J.A. Miller, C.T. Bowman, Mechanism and modeling of nitrogen chemistry in combustion, Prog. Energy Combust., 15(4) (1989) 287-338.

10.1016/0360-1285(89)90017-8
22

R.P. Lindstedt, F.C. Lockwood, M.A. Selim, Detailed kinetic modelling of chemistry and temperature effects on ammonia oxidation, Combust. Sci. Technol., 99(4-6) (1994) 253-276.

10.1080/00102209408935436
23

J.A. Miller, P. Glarborg, Modeling the thermal De-NOx process: Closing in on a final solution, Int. J. Chem. Kinet., 31(11) (1999) 757-765.

10.1002/(SICI)1097-4601(1999)31:11&lt;757::AID-JCK1&gt;3.0.CO;2-V
24

G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr., V.V. Lissianski, Z. Qin, GRI-mech 3.0, Available at: <http://www.me.berkeley.edu/gri_ mech/>, 1999.

25

A.A. Konnov, Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism, Combust. Flame, 156(11) (2009) 2093-2105.

10.1016/j.combustflame.2009.03.016
26

Z. Tian, Y. Li, L. Zhang, P. Glarborg, F. Qi, An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure, Combust. Flame, 156(7) (2009) 1413-1426.

10.1016/j.combustflame.2009.03.005
27

S.J. Klippenstein, L.B. Harding, P. Glarborg, J.A. Miller, The role of NNH in NO formation and control, Combust. Flame, 158(4) (2011) 774-789.

10.1016/j.combustflame.2010.12.013
28

C. Duynslaegher, F. Contino, J. Vandooren, H. Jeanmart, Modeling of ammonia combustion at low pressure, Combust. Flame, 159(9) (2012) 2799-2805.

10.1016/j.combustflame.2012.06.003
29

H. Nozari and A. Karabeyoğlu, Numerical study of combustion characteristics of ammonia as a renewable fuel and establishment of reduced reaction mechanisms, Fuel, 159 (2015), 223-233.

10.1016/j.fuel.2015.06.075
30

O. Mathieu, E.L. Petersen, Experimental and modeling study on the high-temperature oxidation of Ammonia and related NOx chemistry, Combust. Flame, 162(3) (2015), 554-570.

10.1016/j.combustflame.2014.08.022
31

N. Lamoureux, H.El. Merhubi, L. Pillier, S. de Persis, P. Desgroux, Modeling of NO formation in low pressure premixed flames, Combust. Flame, 163 (2016) 557-575.

10.1016/j.combustflame.2015.11.007
32

Y. Song, H. Hashemi, J.M. Christensen, C. Zou, P. Marshall, P. Glarborg, Ammonia oxidation at high pressure and intermediate temperatures, Fuel, 181 (2016) 358-365.

10.1016/j.fuel.2016.04.100
33

H. Nakamura, S. Hasegawa, T. Tezuka, Kinetic modeling of ammonia/air weak flames in a micro flow reactor with a controlled temperature profile, Combust. Flame, 185 (2017) 16-27.

10.1016/j.combustflame.2017.06.021
34

J. Otomo, M. Koshi, T. Mitsumori, H. Iwasaki, K. Yamada, Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion, Int. J. Hydrogen Energy, 43(5) (2018) 3004-3014.

10.1016/j.ijhydene.2017.12.066
35

R. Li, A.A. Konnov, G. He, F. Qin, D. Zhang, Chemical mechanism development and reduction for combustion of NH3/H2/CH4 mixtures, Fuel, 257 (2019) 116059.

10.1016/j.fuel.2019.116059
36

Y. Li, C.-W. Zhou, K.P. Somers, K. Zhang, H.J. Curran, The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene, Proc. Combust. Inst., 36(1) (2017) 403-411.

10.1016/j.proci.2016.05.052
37

K.P. Shrestha, L. Seidel, T. Zeuch, F. Mauss, Detailed kinetic mechanism for the oxidation of ammonia including the formation and reduction of nitrogen oxides, Energy Fuels, 32 (2018) 10202-10217.

10.1021/acs.energyfuels.8b01056
38

E.C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, H. Kobayashi, Experimental and numerical study of the laminar burning velocity of CH4?NH3?air premixed flames, Combust. Flame, 187 (2018) 185-198.

10.1016/j.combustflame.2017.09.002
39

E.C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, H. Kobayashi, Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism, Combust. Flame, 204 (2019) 162-175.

10.1016/j.combustflame.2019.03.008
40

K.P. Shrestha, C. Lhuillier, A.A. Barbosa, P. Brequigny, F. Contino, C. Mounaïm-Rousselle, L. Seidel, F. Mauss, An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature, Proc. Combust. Inst., 38(2) (2021) 2163-2174.

10.1016/j.proci.2020.06.197
41

X. Han, Z. Wang, Y. He, Y. Zhu, K. Cen, Experimental and kinetic modeling study of laminar burning velocities of NH3/syngas/air premixed flames, Combust. Flame, 213 (2020) 1-13.

10.1016/j.combustflame.2019.11.032
42

X. Zhang, S.P. Moosakutty, R.P. Rajan, M. Younes, S.M. Sarathy, Combustion chemistry of ammonia/hydrogen mixtures: Jet-stirred reactor measurements and comprehensive kinetic modeling, Combust. Flame, 234 (2021) 111653.

10.1016/j.combustflame.2021.111653
43

B. Mei, J. Zhang, X. Shi, Z. Xi, Y. Li, Enhancement of ammonia combustion with partial fuel cracking strategy: Laminar flame propagation and kinetic modeling investigation of NH3/H2/N2/air mixtures up to 10 atm, Combusti. Flame, 231 (2021) 111472.

10.1016/j.combustflame.2021.111472
44

A. Bertolino, M. Fürst, A. Stagni, A. Frassoldati, M. Pelucchi, C. Cavallotti, T. Faravelli, A. Parente, An evolutionary, data-driven approach for mechanism optimization: theory and application to ammonia combustion, Combust. Flame, 229 (2021) 111366.

10.1016/j.combustflame.2021.02.012
45

G.J. Gotama, A. Hayakawa, E.C. Okafor, R. Kanoshima, M. Hayashi, T. Kudo, H. Kobayashi, Measurement of the laminar burning velocity and kinetics study of the importance of the hydrogen recovery mechanism of ammonia/hydrogen/air premixed flames, Combust. Flame, 236 (2022) 111753.

10.1016/j.combustflame.2021.111753
46

M.V. Manna, P. Sabia, K.P. Shrestha, L. Seidel, R. Ragucci, F. Mauss, M. de Joannon, NH3NO interaction at low-temperatures: an experimental and modeling study, Proc. Combust. Inst., 39(1) (2023) 775-784.

10.1016/j.proci.2022.09.027
47

S. Zhou, W. Yang, S. Zheng, S. Yu, H. Tan, B. Cui, J. Wang, S. Deng, X. Wang, An experimental and kinetic modeling study on the low and intermediate temperatures oxidation of NH3/O2/Ar, NH3/H2/O2/Ar, NH3/CO/O2/Ar, and NH3/CH4/O2/Ar mixtures in a jet-stirred reactor, Combust. Flame, 248 (2023) 112529.

10.1016/j.combustflame.2022.112529
48

S. Zhou, B. Cui, W. Yang, H. Tan, J. Wang, H. Dai, L. Li, Z. ur Rahman, X. Wang, S. Deng, X. Wang, An experimental and kinetic modeling study on NH3/air, NH3/H2/air, NH3/CO/air, and NH3/CH4/air premixed laminar flames at elevated temperature, Combust. Flame, 248 (2023) 112536.

10.1016/j.combustflame.2022.112536
49

P. Marshall, P. Glarborg P. Probing high-temperature amine chemistry: is the reaction NH3 + NH2 ⇄ N2H3 + H2 important?, J. Phys. Chem. A, 127(11) (2023) 2601-2607.

10.1021/acs.jpca.2c0892136916833
50

B. Liu, Z. Zhang, S. Yang, F. Yu, B.Y. Belal, G. Li, Experimental and chemical kinetic study for the combustion of ammonia-hydrogen mixtures, Fuel, 371 (2024) 131850.

10.1016/j.fuel.2024.131850
51

T. Rutar, P.C. Malte, Formation in High-Pressure Jet-Stirred Reactors With Significance to Lean-Premixed Combustion Turbines, J. Eng. Gas Turbines Power, 124(4) (2002) 776-783.

10.1115/1.1492829
52

B. Mei, X. Zhang, S. Ma, M. Cui, H. Guo, Z. Cao, Y. Li, Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions, Combust. Flame, 210 (2019) 236-246.

10.1016/j.combustflame.2019.08.033
53

B. Mei, S. Ma, Y. Zhang, X. Zhang, W. Li, Y. Li, Exploration on laminar flame propagation of ammonia and syngas mixtures up to 10 atm, Combust. Flame, 220 (2020) 368-377.

10.1016/j.combustflame.2020.07.011
54

S. Zhou, W. Yang, H. Tan, Q. An, J. Wang, H. Dai, X. Wang, X. Wang, S. Deng, Experimental and kinetic modeling study on NH3/syngas/air and NH3/bio-syngas/air premixed laminar flames at elevated temperature, Combust. Flame, 233 (2021) 111594.

10.1016/j.combustflame.2021.111594
55

J.E. Dove and W.S. Nip, A shock-tube study of ammonia pyrolysis, Can. J. Chem., 57(6) (1979) 689-701.

10.1139/v79-112
56

A.A Konnov and J. De Ruyck, Kinetic modeling of the thermal decomposition of ammonia, Combust. Sci. Technol., 152 (2000) 23-37.

10.1080/00102200008952125
57

C.W. Zhou, Y. Li, U. Burke, C. Banyon, K.P. Somers, S. Ding, S. Khan, J.W. Hargis, T. Sikes, O. Mathieu, E.L. Petersen, M. AlAbbad, A. Farooq, Y. Pan, Y. Zhang, Z. Huang, J. Lopez, Z. Loparo, S.S. Vasu, H.J. Curran, An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: Ignition delay time and laminar flame speed measurements, Combust. Flame, 197 (2018) 423-438.

10.1016/j.combustflame.2018.08.006
58

S. Park, Pressure effect on NO emission in methane/air lean-premixed flames, J. Mech. Sci. Technol., 33 (2019) 3031-3038.

10.1007/s12206-019-0553-1
59

S. Park, Hydrogen addition effect on NO formation in methane/air lean-premixed flames at elevated pressure, Int. J. Hydrogen Energy, 46(50) (2021) 25712-25725.

10.1016/j.ijhydene.2021.05.101
60

C. Lhuillier, P. Brequigny, N. Lamoureux, F. Contino, C. Mounaïm-Rousselle, Experimental investigation on laminar burning velocities of ammonia/hydrogen/air mixtures at elevated temperatures, Fuel, 263 (2020) 116653.

10.1016/j.fuel.2019.116653
61

J. Chen, X. Jiang, X. Qin, Z. Huang, Effect of hydrogen blending on the high temperature auto-ignition of ammonia at elevated pressure, Fuel, 287 (2021) 119563.

10.1016/j.fuel.2020.119563
62

A. Hayakawa, Y. Arakawa, R. Mimoto, K.D.K.A. Somarathne, T. Kudo, H. Kobayashi, Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor, Int. J. Hydrogen Energy, 42(19) (2017) 14010-14018.

10.1016/j.ijhydene.2017.01.046
63

K.N. Osipova, O.P. Korobeinichev, A.G. Shmakov, Chemical structure and laminar burning velocity of atmospheric pressure premixed ammonia/hydrogen flames, Int. J. Hydrogen Energy, 46(80) (2021) 39942-39954.

10.1016/j.ijhydene.2021.09.188
64

K.N. Osipova, S.M. Sarathy, O.P. Korobeinichev, A.G. Shmakov, Chemical structure of premixed ammonia/hydrogen flames at elevated pressures, Combust. Flame, 246 (2022) 112419.

10.1016/j.combustflame.2022.112419
Information
  • Publisher :The Korean Society of Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of the Korean Society of Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 30
  • No :1
  • Pages :18-31
  • Received Date : 2024-11-22
  • Revised Date : 2025-01-07
  • Accepted Date : 2025-01-07