All Issue

2024 Vol.29, Issue 1

Research Article

31 March 2024. pp. 1-16
United Nations, The Paris Agreement, 2015.
Cooperation of related ministries, 2030 enhanced Nationally Determined Contributions (NDC), 2021.
IRENA, Global renewable outlook: Energy transformation 2050, International Renewable Energy Agency, Abu Dhabi, 2020.
IEA, Energy technology perspectives 2020, International Energy Agency, Paris, 2020.
Bloomberg NEF, New Energy Outlook 2020, Boomberg New Energy Finance, London, 2019.
Ministry of Trade, Industry and Energy, 10th basic plane for electricity supply and demand, 2023.
H. Kobayashi, A. Hayakawa, K.D.K.A. Somarathne, E.C. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst., 37 (2019) 109-133. 10.1016/j.proci.2018.09.029
M. Zhang, X. Wei, J. Wang, Z. Huang, H. Tan, The blow-off and transient characteristics of co- firing ammonia/methane fuels in a swirl combustor, Proc. Combust. Inst., 38 (2021) 5181-5190. 10.1016/j.proci.2020.08.056
A. Hayakawa, T. Goto, R. Mimoto, T. Kudo, H. Kobayashi, NO formation/reduction mechanisms of ammonia/air premixed flames at various equivalence ratios and pressure, Mech. Eng. J., 2 (2015) 14-00402. 10.1299/mej.14-00402
A. Hayakawa, T. Goto, R. Mimoto, Y. Arakawa, T. Kudo, H. Kobayashi, Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures, Fuel, 159 (2015) 98-106. 10.1016/j.fuel.2015.06.070
K.J. Bosschaart, L.P.H. de Goey, The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method, Combust. Flame, 136 (2004) 261-169. 10.1016/j.combustflame.2003.10.005
C. Chen, Z. Wang, Z. Yu, X. Han, Y. He, Y. Zhu, A.A. Konnov, Experimental and kinetic modeling study of laminar burning velocity enhancement by ozone additive in NH3+O2+N2 and NH3+CH4/C2H6/ C3H8+air flames, Proc. Combust. Inst., 39 (2023) 4237-4246.
J.A. Miller, M.D. Smooke, R.M. Green, R.J. Kee, Kinetic modeling of the oxidation of ammonia in flames, Combust. Sci. Technol., 34 (1983) 149-176. 10.1080/00102208308923691
E.C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, and H. Kobayashi, Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames, Combust. Flame, 187 (2018) 185-198. 10.1016/j.combustflame.2017.09.002
B. Mei, J. Zhang, X. Shi, Z. Xi, Y. Li, Enhancement of ammonia combustion with partial fuel cracking strategy: Laminar flame propagation and kinetic modeling investigation of NH3/H2/N2/air mixtures up to 10 atm, Combust. Flame, 231 (2021) 111472. 10.1016/j.combustflame.2021.111472
C. Lhuillier, P. Brequigny, N. Lamoureux, F. Contino, C. Mounaïm-Rousselle, Experimental investigation on laminar burning velocities of ammonia/hydrogen/air mixtures at elevated temperatures, Fuel, 263 (2020) 116653. 10.1016/j.fuel.2019.116653
C. Duynslaegher, H. Jeanmart, J. Vandooren, Ammonia combustion at elevated pressure and temperature conditions, Fuel, 89 (2010) 3540-3545. 10.1016/j.fuel.2010.06.008
N. Li, H. Deng, Z. Xu, M. Yan, S. Wei, G. Sun, X. Wen, F. Wang, G. Chen, Experimental study on NH3/H2/air, NH3/CO/air, NH3/H2/CO/air premix combustion in a closed pipe and dynamic simulation at high temperature and pressure, Int. J. Hydrogen Energy, 48 (2023) 34551-34564. 10.1016/j.ijhydene.2023.05.213
P. Jansohn, Modern gas turbines systems: high efficiency, low emissions, fuel flexible power generation, WP, Woodhead Publishing, 2013.
D.J. Beerer, V.G. McDonell, Autoignition of hydrogen and air inside a continuous flow reactor with application to lean premixed combustion, J. Eng. Gas Turb. Power, 130 (2008) 051507. 10.1115/1.2939007
Stationary gas and combustion turbines: New source performance standards (NSPS), U.S. Environment Protection Agency, 2012.
R. Pavri, G.D. Moore, Gas turbine emissions and control, Report No. GER-4211, GE Power Systems, 2001.
Y.B. Zeldovich, The oxidation of nitrogen in combustion and explosions, Acta Physicochimica, 21 (1946) 557-628.
J.L. Toof, A model for the prediction of thermal, prompt, and fuel NOx emissions from combustion turbines, J. Eng. Gas Turb. Power, 108 (1986) 340-347. 10.1115/1.3239909
S. Wang, Z. Wang, C. Chen, A.M. Elbaz, Z. Sun, l W.L. Roberts, Applying heat flux method to laminar burning velocity measurements of NH3/CH4/air at elevated pressures and kinetic modeling study, Combust. Flame, 236 (2022) 111788. 10.1016/j.combustflame.2021.111788
T. Lieuwen, V. McDonell, E. Petersen, D. Santavicca, Fuel flexibility influences on premixed combustor blowout, flashback, autoignition, and stability, J. Eng. Gas Turb. Power, 130 (2008) 011506. 10.1115/1.2771243
X. Han, Z. Wang, M. Costa, Z. Sun, Y. He, K. Cen, Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames, Combust. Flame, 206 (2019) 214-226.
E.C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, H. Kobayashi, Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames, Combust. Flame, 187 (2018) 185-198. 10.1016/j.combustflame.2017.09.002
G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, V.V. Lissianski, Z. Qin,
A.A. Khateeb, T.F. Guiberti, X. Zhu, M. Younes, A. Jamal, W.L. Roberts, Stability limits and exhaust NO performances of ammonia-methane-air swirl flames, Exp. Therm. Fluid Sci., 114 (2020) 110058. 10.1016/j.expthermflusci.2020.110058
M. Zhang, Z. An, X. Wei, J. Wang, Z. Huang, H. Tan, Emission analysis of the CH4/NH3/air co-firing fuels in a model combustor, Fuel, 291 (2021) 120135. 10.1016/j.fuel.2021.120135
A. Ichikawa, A. Hayakawa, Y. Kitagawa, K.D.K.A. Somarathne, T. Kudo, H. Kobayashi, Laminar burning velocity and Markstein length of ammonia/ hydrogen/air premixed flame at elevated pressure, Int. J. Hydrogen Energy, 40 (2015) 9570-9578. 10.1016/j.ijhydene.2015.04.024
C.K. Law, O.C. Kwon, Effects of hydrocarbon substitution on atmospheric hydrogen air flame propagation, Int. J. Hydrogen Energy, 29 (2004) 867-879. 10.1016/j.ijhydene.2003.09.012
T. Lieuwen, V. McDonell, D. Santavicca, T. Sattel mayer, Burner development and operability issues associated with steady flowing syngas fired combustors, Combust. Sci. Technol., 180 (2009) 1169-1192. 10.1080/00102200801963375
X. Zhang, S.P. Moosakutty, R.P. Rajan, M. Younes, S.M. Sarathy, Combustion chemistry of ammonia/ hydrogen mixtures: Jet-stirred reactor measurements and comprehensive kinetic modeling, Combust. Flame, 234 (2021) 111653. 10.1016/j.combustflame.2021.111653
U. Jin, K.T. Kim, Hybrid rich- and lean-premixed ammonia-hydrogen combustion for mitigation of NOx emissions and thermoacoustic instabilities, Combust. Flame, (2024) under review. 10.1016/j.combustflame.2024.113366
G.J. Gotama, A. Hayakawa, E.C. Okafor, R. Kano shima, M. Hayashi, T. Kudo, H. Kobayashi, Measurement of the laminar burning velocity and kinetics study of the importance of the hydrogen recovery mechanism of ammonia/hydrogen/air premixed flames, Combust. Flame, 236 (2022) 111753. 10.1016/j.combustflame.2021.111753
A.M. Elbaz, S. Wang, T.F. Guiberti, W.L. Roberts, Review on the recent advances on ammonia combustion from the fundamentals to the applications, Fuel Commun., 10 (2022) 100053. 10.1016/j.jfueco.2022.100053
M. Zhang, Z. An, L. Wang, X. Wei, B. Jianayihan, J. Wang, Z. Huang, H. Tan, The regulation effect of methane and hydrogen on the emission characteristics of ammonia/air combustion in a model combustor, Int. J. Hydrogen Energy, 46 (2021) 21013-21025. 10.1016/j.ijhydene.2021.03.210
J. Choe, W. Sun, T. Ombrello, C. Carter, Plasma assisted ammonia combustion: Simultaneous NOx reduction and flame enhancement, Combust. Flame, (2021) 430-432. 10.1016/j.combustflame.2021.02.016
J. Choe, W. Sun, Experimental investigation of non-equilibrium plasma-assisted ammonia flames using NH2* chemiluminescence and OH planar laser- induced fluorescence, Proc. Combust. Inst., (2023) 5439-5446. 10.1016/j.proci.2022.07.001
Y. Tang, D. Xie, B. Shi, N. Wang, S. Li, Flammability enhancement of swirling ammonia/air combustion using AC powered gliding arc discharges, Fuel, 313 (2022) 122674. 10.1016/j.fuel.2021.122674
G.T. Kim, J. Park, S.H. Chung, C.S. Yoo, Effects of non-thermal plasma on turbulent premixed flames of ammonia/air in a swirl combustor, Fuel, (2022) 124227. 10.1016/j.fuel.2022.124227
J. Choe, W. Sun, Blowoff hysteresis, flame morphology and the effect of plasma in a swirling flow, J. Appl. Phys., 51 (2018) 365201. 10.1088/1361-6463/aad4dc
H. Takeishi, J. Hayashi, S. Kono, W. Arita, K. Iino, F. Akamatsu, Characteristics of ammonia/N2/O2 laminar flame in oxygen-enriched air condition, Trans. JSME, 181 (2015) 14-00423 (in Japanese). 10.1299/transjsme.14-00423
B. Mei, X. Zhang, S. Ma, M. Cui, H. Guo, Z. Cao, Y. Li, Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions, Combust. Flame, 210 (2019) 236-246. 10.1016/j.combustflame.2019.08.033
Q. Liu, X. Chen, J. Huang, Y. Shen, Y. Zhang, Z. Liu, The characteristics of flame propagation in ammonia/oxygen mixtures, J. Hazard. Mater., 363 (2019) 187-196. 10.1016/j.jhazmat.2018.09.07330308357
H.K. Kim, J.W. Ku, Y.J. Ahn, Y.H. Kim, O.C. Kwon, Effects of O2 enrichment on NH3/air flame propagation and emissions, Int. J. Hydrogen Energy, 46 (2021) 23916-23926. 10.1016/j.ijhydene.2021.04.154
Y. Xia, G. Hashimoto, K. Hadi, N. Hashimoto, A. Hayakawa, H. Kobayashi, O. Fujita, Turbulent burning velocity of ammonia/oxygen/nitrogen premixed flame in O2-enriched air condition, Fuel, 268 (2020) 117383. 10.1016/j.fuel.2020.117383
S. Mashruk, M. Kovaleva, C.T. Chong, A. Hayakawa, E.C. Okafor, A. Valera-Medina, Nitrogen oxides as a by-product of ammonia/hydrogen combustion regimes, Chem. Eng. Trans., 89 (2021) 613-618.
S. Mashruk, M. Kovaleva, A. Alnasif, C.T. Chong, A. Hayakawa, E.C. Okafor, A. Valera-Medina, Nitrogen oxide emissions analysis in ammonia/ hydrogen/air premixed swirling flames, Energy, 260 (2022) 125183. 10.1016/
X. Zhu, A.A. Khateeb, T.F. Guiberti, W.L. Roberts, NO and OH* emission characteristics of very-lean to stoichiometric ammonia-hydrogen-air swirl flames, Proc. Combust. Inst., 38 (2021) 5155-5162. 10.1016/j.proci.2020.06.275
A.A. Khateeb, T.F. Guiberti, G. Wang, W.R. Boyette, M. Younes, A. Jamal, W.L. Robert, Stability limits and NO emissions of premixed swirl ammonia-air flames enriched with hydrogen or methane at elevated pressure, Int. J. Hydrogen Energy, 46 (2021) 11969-11981. 10.1016/j.ijhydene.2021.01.036
IPCC, Climate change 1995: The IPCC second assessment report, 1995.
E.C. Okafor, K.D.K.A. Somarathne, R. Ratthanan, A. Hayakawa, T. Kudo, O. Kurata, N. Iki, T. Tsujimura, H. Furutani, H. Kobayashi, Control of NOx and other emissions in micro gas turbine combustors fuelled with mixtures of methane and ammonia, Combust. Flame, 211 (2020) 406-416. 10.1016/j.combustflame.2019.10.012
D. Pugh, A. Valera-Medina, P. Bowen, A. Giles, B. Goktepe, J. Runyon, S. Morris, S. Hewlett, R. Marsh, Emissions performance of staged premixed and diffusion combustor concepts for an NH3/air flame with and without reactant humidification, J. Eng. Gas Turb. Power, 143 (2021) 051012. 10.1115/1.4049451
S. Gubbi, R. Cole, B. Emerson, D. Noble, R. Steele, W. Sun, T. Lieuwen, Evaluation of minimum NOx emission from ammonia combustion, in: ASME Conference Proceedings, GT2023-102599. 10.1115/GT2023-102599
D. Pugh, J. Runyon, P. Bowen, A. Giles, A. Valera- Medina, R. Marsh, B. Goktepe, S. Hewlett, An investigation of ammonia primary flame combustor concepts for emissions reduction with OH*, NH2* and NH* chemiluminescence at elevated conditions, Proc. Combust. Inst., 38 (2021) 6451-6459. 10.1016/j.proci.2020.06.310
A.M. Elbaz, A.M. Albalawi, S. Wang, W.L. Roberts, Stability characteristics of NH3/CH4/air flames in a combustor fired by a double swirl stabilized burner, Proc. Combust. Inst., 39 (2023) 4205-4213. 10.1016/j.proci.2022.06.004
A. Cavaliere, M. de Joannon, Mild combustion, Prog. Energy Combust. Sci., 30 (2004) 329-366. 10.1016/j.pecs.2004.02.003
G. Sorrentino, P. Sabia, P. Bozza, R. Ragucci, M. de Joannon, Low-NOx conversion of pure ammonia in a cyclonic burner under locally diluted and preheated conditions, Appl. Energy, 254 (2019) 113676. 10.1016/j.apenergy.2019.113676
A. Mohammadpour, K. Mazaheri, A. Alipoor, Reaction zone chracteristics, thermal performance and NOx/N2O emissions analyses of ammonia MILD combustion, Int. J. Hydrogen Energy, 47 (2022) 21013-21031. 10.1016/j.ijhydene.2022.04.190
  • Publisher :The Korean Society of Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of the Korean Society of Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 29
  • No :1
  • Pages :1-16
  • Received Date : 2023-12-30
  • Revised Date : 2024-01-15
  • Accepted Date : 2024-01-15