All Issue

2024 Vol.29, Issue 1 Preview Page

Research Article

31 March 2024. pp. 17-32
U.S Energy Information Administration (eia). International Energy Outlook 2021 (IEO2021), eia, U.S. Department of Energy, Washington, DC, USA, 2021;
H. Kim, U. Jin, Y. Go, M. Choi, I. Gu, M. Baek, K.T. Kim, D. Shin, A Review of Carbon Neutral Gas Turbine Combustion Technology, J. Korean Soc. Combust., 27(2) (2022) 14-38. 10.15231/jksc.2022.27.2.014
Korea Energy, Paradigm Shift in Power Generation: Hydrogen Gas Turbine, Korea Energy Newspaper,, (June 9, 2020).
D. Kim, Review on the Development Trend of Hydrogen Gas Turbine Combustion Technology, J. Korean Soc. Combust., 24(4) (2019) 1-10. 10.15231/jksc.2019.24.4.001
A.H. Lefebvre, Fuel effects on gas turbine combustion-liner temperature, pattern factor, pollutant emissions, J. Aircr., 21(11) (1984) 887-898. 10.2514/3.45059
J. Ziemann, F. Shum, M. Moore, D. Kluyskens, D. Thomaier, N. Zarzalis, H. Eberius, Low-NOx combustors for hydrogen fueled aero engine, Int. J. Hydrogen Energy., 23(4) (1998) 281-288. 10.1016/S0360-3199(97)00054-2
J.B. Heywood, T. Mikus, Parameters controlling nitric oxide emissions from gas turbine combustion, In: 41st Meeting on Atmospheric Pollution by Aircraft Engines, England, London, 1973.
W.D. York, W.S. Ziminsky, E. Yilmaz, Development and testing of a low NOx hydrogen combustion system for heavy duty gas turbines, in Turbo Expo: Power for Land, Sea, and Air, vol. 44687: American Society of Mechanical Engineers, (2012) 1395-1405. 10.1115/GT2012-69913
G. Dahl, F. Suttrop, Engine control and low-NOx combustion for hydrogen fuelled aircraft gas turbines, Int. J. Hydrogen Energy., 23(8) (1988) 695-704. 10.1016/S0360-3199(97)00115-8
N.T. Weiland, T.G. Sidwell, P.A. Strakey, Testing of a hydrogen diffusion flame array injector at gas turbine conditions, Combust. Sci. Technol., 185(7) (2013) 1132-1150. 10.1080/00102202.2013.781164
C. Marek, T. Smith, K. Kundu, Low emission hydrogen combustors for gas turbines using lean direct injection, 41st AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit, (2005) 3776. 10.2514/6.2005-3776
A. Araoye, A. Abdelhafez, R. Ben-Mansour, M. Nemitallah, M. Habib, On the quality of micromixing in an oxy-fuel micromixer burner for gas turbine applications: A numerical study, Chem. Eng. Process., 162 (2021) 108336. 10.1016/j.cep.2021.108336
C.L. Cha, S.S. Hwang, Numerical study on combustion characteristics of hydrogen gas turbine combustor using cross flow micro-mix system, J. Korean Soc. Combust., 24(3) (2019), 17-25. 10.15231/jksc.2019.24.3.017
H.W. Funke, N. Beckmann, S. Abanteriba, An overview on dry low NOx micromix combustor development for hydrogen-rich gas turbine applications, Int. J. Hydrogen Energy., 44(13) (2019) 6978-6990. 10.1016/j.ijhydene.2019.01.161
H.W. Funke, E. Recker, S. Börner, W. Bosschaerts, LES of jets in cross-flow and application to the micromix hydrogen combustion, in Proceedings of the 19th International Symposium on Air Breathing Engine, Montreal Canada, 2009.
H.W. Funke, S. Börner, J. Keinz, K. Kusterer, D. Kroniger, J. Kitajima, M. Kazari, A. Horikawa, Numerical and experimental characterization of low NOx Micromix combustion principle for industrial hydrogen gas turbine applications, in Turbo Expo: Power for Land, Sea, and Air, 2012, vol. 44687: American Society of Mechanical Engineers, 1069-1079. 10.1115/GT2012-69421
A.H. Ayed, K. Kusterer, H.W. Funke, J. Keinz, C. Striegan, D. Bohn, Experimental and numerical investigations of the dry-low-NOx hydrogen micromix combustion chamber of an industrial gas turbine, Propuls. Power Res., 4(3) (2015) 123-131. 10.1016/j.jppr.2015.07.005
X. Chen, H. Wang, X. Wang, X. Liu, Y. Zhu, Fuel/air mixing characteristics of a Micromix burner for hydrogen-rich gas turbine, Energy, 282 (2023) 128786. 10.1016/
X. Chen, H. Wang, C. Wang, X. Wang, N. Wang, X. Liu, Numerical investigation into fuel-air mixing characteristics and cold flow field of single hydrogen-rich Micromix nozzle, Fuel., 332 (2023) 126181. 10.1016/j.fuel.2022.126181
J. Choi, M. Ahn, S. Kwak, J.G. Lee, Y. Yoon, Flame structure and NOx emission characteristics in a single hydrogen combustor, Int. J. Hydrogen Energy., 47(68) (2022) 29542-29553. 10.1016/j.ijhydene.2022.06.247
H. Lei, B. Khandelwal, Investigation of novel configuration of hydrogen micromix combustor for low NOx emission, AIAA Scitech 2020 Forum., (2020), 1933. 10.2514/6.2020-1933
P. Murthy, B. Khandelwal, V. Sethi, R. Singh, Hydrogen as a Fuel for Gas Turbine Engines with Novel Micromix Type Combustors, in 47th AIAA/ ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2011, 5806. 10.2514/6.2011-5806
A. Karakurt, B. Khandelwal, V. Sethi, R. Singh, Study of Novel Micromix Combustors to be used in Gas Turbines; using Hydrogen, Hydrogen-Methane, Methane and Kerosene as a fuel, in 48th AIAA/ ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2012, 4265. 10.2514/6.2012-4265
H. Lee, S. Hernandez, V. McDonell, E. Steinthorsson, A. Mansour, B. Hollon, Development of flashback resistant low-emission micro-mixing fuel injector for 100% hydrogen and syngas fuels, in Turbo Expo: Power for Land, Sea, and Air, 2009, 48838, 411-419. 10.1115/GT2009-59502
A. Haj Ayed, Numerical Characterization and Development of the Dry Low NOx High Hydrogen Content Fuel Micromix Combustion for Gas Turbine Applications, 2017.
U. Bhayaraju, M. Hamza, S.M. Jeng, Development of Porous Injection Technology to Reduce Emissions for Dry Low NOx Combustors: Micromixer and Swirl Injectors, in Turbo Expo: Power for Land, Sea, and Air, 2017, vol. 50848: American Society of Mechanical Engineers, V04AT04A059. 10.1115/GT2017-63976
A. Landry-Blais, S. Sivić, M. Picard, Micro-mixing combustion for highly recuperated gas turbines: effects of inlet temperature and fuel composition on combustion stability and NOx emissions, J. Eng. Gas Turbine Power., 144(9) (2022) 091014. 10.1115/1.4055190
R.H. Chen, J.F. Driscoll, J. Kelly, M. Namazia, R. Schefer, A comparison of bluff-body and swirl- stabilized flames, Combust. Sci. Technol., 71(4-6) (1990) 197-217. 10.1080/00102209008951632
N. Schmidt, M. Müller, P. Preuster, L. Zigan, P. Wasserscheid, S. Will, Development and characterization of a low-NOx partially premixed hydrogen burner using numerical simulation and flame diagnostics, Int. J. Hydrogen Energy., 48(41) (2023) 15709-15721. 10.1016/j.ijhydene.2023.01.012
G. Bagheri, S.E. Hosseini, M.A. Wahid, Effects of bluff body shape on the flame stability in premixed micro-combustion of hydrogen-air mixture, Appl. Them. Eng., 67(1-2) (2014) 266-272. 10.1016/j.applthermaleng.2014.03.040
A. Fan, J. Wan, K. Maruta, H. Yao, W. Liu, Interactions between heat transfer flow field and flame stabilization in a micro-combustor with a bluff body, Int. J. Heat Mass Transfer., 66 (2013) 72-79. 10.1016/j.ijheatmasstransfer.2013.07.024
H.W. Funke, S. Börner, W. Krebs, E. Wolf, Experimental characterization of low NOx micromix prototype combustors for industrial gas turbine applications, in Turbo Expo: Power for Land, Sea, and Air, 54624(2011) 343-353. 10.1115/GT2011-45305
Y. Yahagi, M. Sekiguti, K. Suzuki, Flow structure and flame stability in a micro can combustor with a baffle plate, Appl. Therm. Eng., 27(4) (2007) 788-794. 10.1016/j.applthermaleng.2006.10.019
W.H. Kim, T.S. Park, Effects of noncircular air holes on reacting flow characteristics in a micro can combustor with a seven-hole baffle, Appl. Therm. Eng., 100 (2016) 378-391. 10.1016/j.applthermaleng.2016.02.004
S. Hasemann, H. Seliger, P. Kutne, M. Aigner, Experimental and numerical design study for a small scale jet-stabilized micro gas turbine combustor, in Turbo Expo: Power for Land, Sea, and Air, 2018, vol. 51050: American Society of Mechanical Engineers, V04AT04A002. 10.1115/GT2018-75050
X. Liu, W. Shao, Y. Tian, Y. Liu, B. Yu, Z. Zang, Y. Xiao, Investigation of H2/CH4-air flame characteristics of a micromix model burner at atmosphere pressure condition, in Turbo Expo: Power for Land, Sea, and Air, 2018, vol. 51067: American Society of Mechanical Engineers, V04BT04A015. 10.1115/GT2018-76276
C. Xing, P. Qiu, L. Zhang, X. Yu, X. Chen, Y. Zhao, J. Peng, W. Shen, Research on combustion performance of a micro-mixing combustor for methane- fueled gas turbine, J. Energy Inst., 103 (2022) 72-83. 10.1016/j.joei.2022.05.014
Z. Liu, Y. Xiong, Z. Zhang, L. Ren, Y. Liu, Y. Lu, Investigation of a novel combustion stabilization mechanism and combustion characteristics of a multi-nozzle array model combustor, Fuel., 327 (2022) 125-138. 10.1016/j.fuel.2022.125138
Z. Liu, Y. Xiong, N. Yang, L. Ren, Y. Liu, S. Zhang, Z. Zhang, X. Xu, Comparison of combustion characteristics of MILD model combustor and multi- nozzle array model combustor fueled hydrogen- methane mixtures, Int. J. Hydrogen Energy., 48(81) (2023) 31802-31812. 10.1016/j.ijhydene.2023.04.326
T. Yusaf, A.S.F. Mahamude, K. Kadirgama, D. Ramasamy, K. Farhana, H.A. Dhahad, A. Talib, Sustainable hydrogen energy in aviation-A narrative review, Int. J. Hydrogen Energy., 52(C) (2023), 1026-1045. 10.1016/j.ijhydene.2023.02.086
H. W. Funke, J. Keinz, K. Kusterer, A. H. Ayed, M. Kazari, J. Kitajima, A. Horikawa, K. Okada, Experimental and numerical study on optimizing the DLN micromix hydrogen combustion principle for industrial gas turbine applications, in Turbo Expo: Power for Land, Sea, and Air, 2015, vol. 56680: American Society of Mechanical Engineers, V04 AT04A008. 10.1115/GT2015-42043
H.W. Funke, J. Keinz, K. Kusterer, A.H. Ayed, M. Kazari, J. Kitajima, A. Horikawa, K. Okada, Experimental and numerical study on optimizing the dry low NOx micromix hydrogen combustion principle for industrial gas turbine applications, J. Therm. Sci. Eng. Appl., 9(2) (2017) 021001. 10.1115/1.4034849
M.C. Lee, J. Yoon, S. Joo, J. Kim, J. Hwang, Y. Yoon, Investigation into the cause of high multi-mode combustion instability of H2/CO/CH4 syngas in a partially premixed gas turbine model combustor, Proc. Combust. Inst., 35(3) (2015) 3263-3271. 10.1016/j.proci.2014.07.013
D.M. Wicksall, A.K. Agrawal, Acoustics measurements in a lean premixed combustor operated on hydrogen/hydrocarbon fuel mixtures, Int. J. Hydrogen Energy., 32(8) (2007) 1103-1112. 10.1016/j.ijhydene.2006.07.008
T. Lee, K.T. Kim, Combustion dynamics of lean fully-premixed hydrogen-air flames in a mesoscale multinozzle array, Combust. Flame., 218 (2020), 234-246. 10.1016/j.combustflame.2020.04.024
Z. Cao, Y. Lyu, J. Peng, P. Qiu, L. Liu, C. Yang, Y. Yu, G. Chang, B. Yan, S. Sun, Experimental study of flame evolution, frequency and oscillation characteristics of steam diluted micro-mixing hydrogen flame, Fuel., 301 (2021) 121078. 10.1016/j.fuel.2021.121078
J. McClure, D. Abbott, P. Agarwal, X. Sun, G. Babazzi, V. Sethi, P. Gauthier, Comparison of hydrogen micromix flame transfer functions determined using RANS and LES, in Turbo Expo: Power for Land, Sea, and Air, 2019, vol. 58608: American Society of Mechanical Engineers, V003T03A009. 10.1115/GT2019-90538
J. Beita, M. Talibi, S. Sadasivuni, R. Balachandran, Thermoacoustic instability considerations for high hydrogen combustion in lean premixed gas turbine combustors: a review. Hydrogen., 2(1) (2021) 33-57. 10.3390/hydrogen2010003
S. Dodo, T. Asai, H. Koizumi, H. Takahashi, S. Yoshida, H. Inoue, Combustion characteristics of a multiple-injection combustor for dry low-NOx combustion of hydrogen-rich fuels under medium pressure, in Turbo Expo: Power for Land, Sea, and Air, 54624 (2011) 467-476. 10.1115/GT2011-45459
T. Asai, K. Miura, Y. Akiyama, M. Karishuku, K. Yunoki, S. Dodo, N. Horii, Development of fuel- flexible gas turbine combustor, in Proceedings of the 45th Turbomachinery Symposium, 2016: Turbomachinery Laboratories, Texas A&M Engineering Experiment Station.
J. Melzak, T. Lieuwen, A. Mansour, High-bandwidth Modulation of H2/Syngas Fuel to Control Combustion Dynamics in Micro-Mixing Lean Premix Systems, Parker-Hannifin Corporation, 2012. 10.2172/104382522867267PMC5448994
D. Cecere, E. Giacomazzi, A. Di Nardo, G. Calchetti, Gas turbine combustion technologies for hydrogen blends, Energies., 16(19) (2023) 6829. 10.3390/en16196829
N. Tekin, M. Ashikaga, A. Horikawa, H. Funke, Enhancement of fuel flexibility of industrial gas turbines by development of innovative hydrogen combustion systems, Gas Energy., 2 (2018) 1-6.
  • Publisher :The Korean Society of Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of the Korean Society of Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 29
  • No :1
  • Pages :17-32
  • Received Date : 2023-12-11
  • Revised Date : 2024-02-16
  • Accepted Date : 2024-02-16