All Issue

2023 Vol.28, Issue 2

Research Article

30 June 2023. pp. 1-10
Abstract
References
1
United Nations Framework Convention on Climate Change (UNFCCC), 2021, NDC registry.
2
Joint of Ministry concerned, 2021, Update of 2030 Nationally Determined Contribution(NDC).
3
Ministry of Trade, Industry and Energy(MOTIE), 2021, Achievements of the Hydrogen Economy and Vision for Leading Hydrogen Nations.
4
Joint of Ministry concerned, 2021, 2050 Carbon Neutral Scenario.
5
A. Klerke, C. H. Christensen, J. K. Nørskov, T. Vegge, Ammonia for hydrogen storage: challenges and opportunities, J. Mater. Chem., 18 (2008), 2304-2310. 10.1039/b720020j
6
H. Kobayashi, A. Hayakawa, K. K. A. Somarathne, E. C. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst., 37(1) (2019), 109-133. 10.1016/j.proci.2018.09.029
7
A. Cavaliere, M. de Joannon, Mild combustion, Prog. Energy Combust. Sci., 30(4) (2004), 329-366. 10.1016/j.pecs.2004.02.003
8
P. Bozza, "Development of a fuel flexible, high efficiency combustion unit, University of Naples Federico II Ph. D thesis, 2017.
9
W. S. Chai, Y. Bao, P. Jin, G. Tang, L. Zhou, A review on ammonia, ammonia-hydrogen and ammonia-methane fuels, Renew. Sustain. Energy Rev., 147 (2021), 11254. 10.1016/j.rser.2021.111254
10
J. Li, H. Huang, N. Kobayashi, Z. He, Y. Nagai, Study on using hydrogen and ammonia as fuels: Combustion characteristics and NOx formation, Int. J. Energy Res., 38 (2014), 1214-1223. 10.1002/er.3141
11
J. Otomo, M. Koshi, T. Mitsumori, H. Iwasaki, K, Yamada, Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion, Int. J. Hydrog. Energy, 43(5) (2018), 3004-3014. 10.1016/j.ijhydene.2017.12.066
12
A. Hayakawa, Y. Arakawa, R Mimoto, K. K. A. Somarathne, T. Kudo, H. Kobayashi, Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor, Int. J. Hydrog. Energy, 42(19) (2017), 14010-14018. 10.1016/j.ijhydene.2017.01.046
13
P. Li, J. Mi, B. B. Dally, F. Wang, L. Wang, Z. Liu, S. Chen, C. Zheng, Progress and recent trend in MILD combustion, Sci. China Technol. Sci., 54 (2011), 255-269. 10.1007/s11431-010-4257-0
14
R.J. Kee, J. A. Miler, G. H. Evans, G.D. Lewis, A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flames, Symp. (Int.) Combust., 22(1) (1989), 1479- 1494. 10.1016/S0082-0784(89)80158-4
15
J. Park, D. Kim, Y. Lee, Experimental study on flameless combustion and NO emission with hydrogen-containing fuels, Int. J. Energy Res., 46(3) (2022), 2512-2528. 10.1002/er.7324
16
R. Li, A. A. Konnov, G. He, F. Qin, D. Zhang, Chemical mechanism development and reduction for combustion of NH3/H2/CH4 mixtures, Fuel, 257 (2019), 116059. 10.1016/j.fuel.2019.116059
17
J.A.Wünning, J.G.Wünning, Flameless oxidation to reduce thermal no-formation, Prog. Energy Combust. Sci., 23(1) (1997), 81-94. 10.1016/S0360-1285(97)00006-3
18
ANSYS Chemkin Theory Manual 17.0 (15151), Reaction Design: San Diego, 2015.
19
V. Vukadinovic, P. Habisreuther, N. Zarzalis, Experimental study on combustion characteristics of conventional and alternative liquid fuels, J. Eng. Gas Turbines Power, 134(12) (2012), 121504. 10.1115/1.4007333
20
G. Sorrentino, A. Cavaliere, P. Sabia, R. Ragucci, M. de Joannon, Diffusion Ignition Processes in MILD Combustion: A Mini-Review, Front. Mech. Eng., 6 (2020). 10.3389/fmech.2020.00010
21
M. de Joannon, P. Sabia, G. Cozzolino, A. Cavaliere, Pyrolitic and Oxidative Structures in Hot Oxidant Diluted Oxidant (HODO) MILD Combustion, Combust. Sci. Technol., 184(7-8) (2012), 1207-1218. 10.1080/00102202.2012.664012
22
S. Mashruk, E. C. Okafor, M. Kovaleva, A. Alnasif, D. Pugh, A. Hayakawa, A. V. Medina, Evolution of N2O production at lean combustion condition in NH3/H2/air premixed swirling flames, Combust. Flame, 244 (2022), 112299. 10.1016/j.combustflame.2022.112299
23
C. Duynslaegher, F. Contico, J. Vandooren, H. Jeanmart, Modeling of ammonia combustion at low pressure, Combust. Flame, 159(9) (2012), 2799-2805. 10.1016/j.combustflame.2012.06.003
24
H. Nozari, A. Karabeyoğlu, Numerical study of combustion characteristics of ammonia as a renewable fuel and establishment of reduced reaction mechanisms, Fuel, 159 (2015), 223-233. 10.1016/j.fuel.2015.06.075
25
J. H. Lee, J. H. Kim, J. H. Park, O. C. Kwon, Studies on properties of laminar premixed hydrogen-added ammonia/air flames for hydrogen production, Int. J. Hydrog. Energy, 35(3) (2010), 1054-1064. 10.1016/j.ijhydene.2009.11.071
26
A. Mohammadpour, K. Mazaheri, A. Alipoor, Reaction zone characteristics, theramal performance and NOx/N2O emissions analyses of ammonia MILD combustion, Int. J. Hydrog. Energy, 47(48) (2022), 21013-21031. 10.1016/j.ijhydene.2022.04.190
Information
  • Publisher :The Korean Society of Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of the Korean Society of Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 28
  • No :2
  • Pages :1-10
  • Received Date : 2023-02-28
  • Revised Date : 2023-03-03
  • Accepted Date : 2023-03-29