All Issue

2020 Vol.25, Issue 3 Preview Page

Research Article

30 September 2020. pp. 11-20
Abstract
References
1
J.B. Heywood, Internal combustion engine fundamentals, McGraw-Hill, New York (1988).
2
R. Mikalsen, Internal combustion and reciprocating engine systems for small and micro combined heat and power (CHP) applications, Small and Micro Combined Heat and Power (CHP) Systems: Advanced Design, Performance, Materials and Applications. (2011)125-146. doi:10.1533/9780857092755.2.125.
10.1533/9780857092755.2.125
3
F. Wankel, "ROTARY INTERNAL COMBUSTION ENGINE", US Patent US2,988,065 A, 1958.
4
Wikipedia, Wankel engine, URL : https://en.wikipedia.org/wiki/Wankel_engine.
5
M.S. Raju, Heat transfer and performance characteristics of a dual-ignition wankel engine, SAE Tech. Pap. (1992). doi:10.4271/920303.
10.4271/920303
6
Timothy Bartrand, Edward A. Willis, Rotary engine performance limits predicted by a zero-dimensional model, SAE Tech. Pap. (1992). doi:10.4271/920301.
10.4271/920301
7
M. Leboeuf, J.F. Dufault, M. Nickerson, K. Becker, A. Kopache, N. Shkolnik, A. Shkolnik, M. Picard, Performance of a Low-Blowby Sealing System for a High Efficiency Rotary Engine, SAE Tech. Pap. 2018-April (2018) 1-10.doi:10.4271/2018-01-0372.
10.4271/2018-01-0372
8
Shkolnik, A. and Shkolnik, N., "CYCLOID ROTOR ENGINE", US Patent, US2012-0294747A1, 2012.
9
P.J. Gamez-Montero, E. Codina, Flow characteristics of a trochoidal-gear pump using bond graphs and experimental measurement. Part 1, Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 221 (2007)331-346. doi:10.1243/09596518J SCE250.
10.1243/09596518JSCE250
10
N. Shkolnik, A. Shkolnik, Rotary high efficiency hybrid cycle engine, SAE Tech. Pap. (2008). doi:10.4271/2008-01-2448.
10.4271/2008-01-2448
11
A. Shkolnik, D. Littera, M. Nickerson, N. Shkolnik, K. Cho, Development of a small rotary SI/CI combustion engine, SAE Tech. Pap. 2014-November (2014). doi:10.4271/2014-32-0104.
10.4271/2014-32-0104
12
D. Littera, M. Nickerson, A. Kopache, G. Machamada, C. Sun, A. Schramm, N. Medeiros, K. Becker, N. Shkolnik, A. Shkolnik, Development of the XMv3 High Efficiency Cycloidal Engine, SAE Tech. Pap. 2015-November (2015).
13
A. Shkolnik, N. Shkolnik, J. Scarcella, M. Nickerson, A. Kopache, K. Becker, M. Bergin, A. Spitulnik, R. Equiluz, R. Fagan, S. Ahmed, S. Donnelly, T. Costa, Compact, Lightweight, High Efficiency Rotary Engine for Generator, Apu, and Range-Extended Electric Vehicles, (2018) 1-13.
14
T.J. Costa, M. Nickerson, D. Littera, J. Martins, A. Shkolnik, N. Shkolnik, F. Brito, Measurement and Prediction of Heat Transfer Losses on the XMv3 Rotary Engine, SAE Int. J. Engines. 9 (2016) 2368- 2380. doi:10.4271/2016-32-0033.
10.4271/2016-32-0033
15
M. Nickerson, A. Kopache, A. Shkolnik, K. Becker, N. Shkolnik, M. Bergin, A. Spitulnik, K. Mikhailov, R. Equiluz, R. Fagan, S. Ahmed, S. Donnelly, T. Costa, Preliminary Development of a 30 kW Heavy Fueled Compression Ignition Rotary "X" Engine with Target 45% Brake Thermal Efficiency, SAE Tech. Pap. 2018-April (2018) 1-10. doi:10.4271/2018-01-0885.
10.4271/2018-01-0885
16
B.H. Yu, Y.H. Lee, C.E. Lee, B.C. Lee, G.G. Lee, ROTARY ENGINE, KR Patent, KR10-2015-0185404, 2015.
17
J.B. Shung, G.R. Pennock, Geometry for trochoidal-type machines with conjugate envelopes, Mech. Mach. Theory. 29 (1994) 25-42. doi:10.1016/0094-114X(94)90017-5.
10.1016/0094-114X(94)90017-5
18
Richards, K. Senecal, P. K., and Pomraning, E., CONVERGE 2.4, Covergent Science, madison, WI(2018).
19
Jinxin Yang, Changwei Ji, Shuofeng Wang, Du Wang, Zedong Ma, Boya Zhang, Numerical investigation on the mixture formation and combustion processes of a gasoline rotary engine with direct injected hydrogen enrichment, Applied Energy 224 34-41 2018.
10.1016/j.apenergy.2018.04.092
20
A. Broatch, P. Olmeda, X. Margot, J. Escalona, New approach to study the heat transfer in internal combustion engines by 3D modeling, Int J Therm Sci, 138 405-415 2019.
10.1016/j.ijthermalsci.2019.01.006
21
F. Wang, R.D. Reitz, C. Pera, Z. Wang, J. Wang, Application of generalized rng turbulence model to flow in motored single-cylinder PFI engine, Eng. Appl. Comput. Fluid Mech. 7 (2013) 486-495. doi:10.1080/19942060.2013.11015487.
10.1080/19942060.2013.11015487
22
B.E Launder, D.B. Spalding. The Numerical Computation of Turbulent Flow Computer Methods. Comput Method Appl M. 3. (1974) 269-289.
10.1016/0045-7825(74)90029-2
23
T.J. Craft, S.E. Gant, H. Iacovides, B.E. Launder, A new wall function strategy for complex turbulent flows, Numerical Heat Transfer, Part B: Fundamentals. 45 (2004) 301-318. doi:10.1080/10407790490277931.
10.1080/10407790490277931
24
T. Cebeci, J. Cousteix, Modeling and Computation of Boundary-Layer Flows. Horizons Publishing, Long Beach, (2005).
25
F. Berni, G. Cicalese, S. Fontanesi, A modified thermal wall function for the estimation of gas-to-wall heat fluxes in CFD in-cylinder simulations of high performance spark-ignition engines, Appl. Therm. Eng. 115 (2017) 1045-1062. doi:10.1016/j.applthermaleng.2017.01.055.
10.1016/j.applthermaleng.2017.01.055
26
WW. Pulkrabek, "Engineering fundamentals of the internal combustion engine," Prentice Hall, (1997).
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 25
  • No :3
  • Pages :11-20
  • Received Date : 2020-04-24
  • Revised Date : 2020-05-18
  • Accepted Date : 2020-07-14