All Issue

2020 Vol.25, Issue 3

Research Article

30 September 2020. pp. 1-10
Abstract
References
1
A. Cavaliere, M. Joannon, Mild combustion, Prog. Energy Combust. Sci., 30 (2004) 329-366.
10.1016/j.pecs.2004.02.003
2
G. Ceriello, G. Sorrentino, A. Cavaliere, P. Sabia, M. Joannon, The role of dilution level and canonical configuration in the modeling of MILD combustion systems with internal recirculation, Fuel, 264 (2020) 116840.
10.1016/j.fuel.2019.116840
3
M. Joannon, G. Sorrentino, A. Cavaliere, MILD combustion in diffusion-controlled regimes of Hot Diluted Fuel, Combust. Flame, 159 (2012) 1832-1839.
10.1016/j.combustflame.2012.01.013
4
P. Sabia, G. Sorrentino, P. Bozza, G. Ceriello, R. Ragucci, M. Joannon, Fuel and thermal load flexibility of a MILD burner, Proc. Combust. Inst., 37 (2019) 4547-4554.
10.1016/j.proci.2018.09.003
5
J.A. Wünning, J.G. Wünning, Flameless oxidation to reduce thermal NO-formation, Prog. Energy Combust. Sci., 23 (1997) 81-94.
10.1016/S0360-1285(97)00006-3
6
H. Tsuji, A.K. Gupta, T. Hasegawa, M. Katsuki, K. Kishimoto, M. Morita, High temperature air combustion: From energy conservation to pollution reduction, CRC Press, Philadelphia, 2002.
10.1201/9781420041033
7
Y. Tu, K. Su, H. Liu, Z. Wang, Y. Xie, C. Zheng, W. Li, MILD combustion of natural gas using low preheating temperature air in an industrial furnace, Fuel Process. Technol., 156 (2017) 72-81.
10.1016/j.fuproc.2016.10.024
8
T. Jozaalizadeh, D. Toghraie, Numerical investigation behavior of reacting flow for flameless oxidation technology of MILD combustion: Effect of fluctuating temperature of inlet co-flow, Energy, 178 (2019) 530-537.
10.1016/j.energy.2019.04.198
9
P. Sabia, M. Joannon, A. Picarelli, R. Ragucci, Methane auto-ignition delay times and oxidation regimes in MILD combustion at atmospheric pressure, Combust. Flame, 160 (2013) 47-55.
10.1016/j.combustflame.2012.09.015
10
Y. Tu, H. Liu, S. Chen, Z. Liu, H. Zhao, C. Zheng, Effects of furnace chamber shape on the MILD combustion of natural gas, Appl. Therm. Eng., 76 (2015) 64-75.
10.1016/j.applthermaleng.2014.11.007
11
P.H. Lee, S.S. Hwang, Experimental study for oxygen methane MILD combustion in a laboratory scale furnace, J. Korean Soc. Combust., 21(4) (2016) 6-15.
10.15231/jksc.2016.21.4.006
12
P. Li, B.B. Dally, J. Mi, F. Wang, MILD oxy- combustion of gaseous fuels in a laboratory-scale furnace, Combust. Flame, 160 (2013) 933-946.
10.1016/j.combustflame.2013.01.024
13
M. Huang, Z. Zhang, W. Shao, Y. Xiong, Y. Liu, F. Lei, Y. Xiao, Effect of air preheat temperature on the MILD combustion of syngas, Energy Convers. Manag., 86 (2014) 356-364.
10.1016/j.enconman.2014.05.038
14
M. Weidmann, D. Honoré, V. Verbaere, G. Boutin, S. Grathwohl, G. Godard, C. Gobin, R. Kneer, G. Scheffknecht, Experimental characterization of pulverized coal MILD flameless combustion from detailed measurements in a pilot-scale facility, Combust. Flame, 168 (2016) 365-377.
10.1016/j.combustflame.2016.01.029
15
S. Kruse, B. Kerschgens, L. Berger, E. Varea, H. Pitsch, Experimental and numerical study of MILD combustion for gas turbine applications, Appl. Energy, 148 (2015) 456-465.
10.1016/j.apenergy.2015.03.054
16
X. Li, Z. Dai, Q. Guo, Q. Liang, F. Wang, Experimental and numerical study of MILD combustion in a bench-scale natural gas partial oxidation gasifier, Fuel, 193 (2017) 197-205.
10.1016/j.fuel.2016.12.056
17
S.H. Lee, K.Y. Huh, Comparison of the combustion characteristics between air combustion and oxy- combustion with CO2 recirculation, J. Korean Soc. Combust., 13(3) (2008) 24-32.
18
G. Bagheri, E. Ranzi, M. Pelucchi, A. Parente, A. Frassoldati, T. Faravelli, Comprehensive kinetic study of combustion technologies for low environmental impact: MILD and OXY-fuel combustion of methane, Combust. Flame, 212 (2020) 142-155.
10.1016/j.combustflame.2019.10.014
19
P.H. Lee, S.S. Hwang, Formation of oxy-fuel MILD combustion under different operating conditions, Trans. Korean Soc. Mech. Eng. B, 40(9) (2016) 577-587.
10.3795/KSME-B.2016.40.9.577
20
S. Chen, H. Liu, C. Zheng, Methane combustion in MILD oxyfuel regime: Influences of dilution atmosphere in co-flow configuration, Energy, 121 (2017) 159-175.
10.1016/j.energy.2017.01.011
21
Y. Xie, Y. Tu, H. Jin, C. Luan, Z. Wang, H. Liu, Numerical study on a novel burner designed to improve MILD combustion behaviors at the oxygen enriched condition, Appl. Therm. Eng., 152 (2019) 686-696.
10.1016/j.applthermaleng.2019.02.023
22
Y. He, C. Zou, Y. Song, Y. Liu, C. Zheng, Numerical study of characteristics on NO formation in methane MILD combustion with simultaneously hot and diluted oxidant and fuel(HDO/HDF), Energy, 112 (2016) 1024-1035.
10.1016/j.energy.2016.07.020
23
S. Cao, C. Zou, Q. Han, Y. Liu, D. Wu, C. Zheng, Numerical and experimental studies of NO formation mechanisms under methane moderate or intense low-oxygen dilution (MILD) combustion without heated air, Energy Fuels, 29 (2015) 1987-1996.
10.1021/ef501943v
24
A.F. Colorado, B.A. Herrera, A.A. Amell, Performance of a flameless combustion furnace using biogas and natural gas, Bioresour. Technol., 101 (2010) 2443-2449.
10.1016/j.biortech.2009.11.00319944602
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 25
  • No :3
  • Pages :1-10
  • Received Date : 2020-04-13
  • Revised Date : 2020-07-10
  • Accepted Date : 2020-07-11