All Issue

2021 Vol.26, Issue 1 Preview Page

Technical Notes

March 2021. pp. 84-106
Abstract
References
1
2030 국가 온실가스 감축목표(NDC), 대한민국정부, 2020.
2
2020년 국가 온실가스 인벤토리(1990-2018), 환경부 온실가스종합정보센터, 2020.
3
H. Kobayashi, A. Hayakawa, K. Somarathne, E. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst., 37 (2019) 109-133. 10.1016/j.proci.2018.09.029
4
A. Hayakawa, Y. Arakawa, R. Mimoto, K. Somarathne, T. Kudo, H. Kobayashi, Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor, Int. J. Hydrogen Energ., 42 (2017) 14010-14018. 10.1016/j.ijhydene.2017.01.046
5
A. Hayakawa, T. Goto, R. Mimoto, Y. Arakawa, T. Kudo, H. Kobayashi, Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures, Fuel, 159 (2015) 98-106. 10.1016/j.fuel.2015.06.070
6
K. Takizawa, A. Takahashi, K. Tokuhashi, S. Kondo, A. Sekiya, Burning velocity measurements of nitrogen- containing compounds, J. Hazard. Mater., 155 (2008) 144-152. 10.1016/j.jhazmat.2007.11.08918207640
7
U. Pfahl, M. Ross, J. Shepherd, K. Pasamehmetoglu, C. Unal, Flammability limits, ignition energy, and flame speeds in H2-CH4-NH3-N2O-O2-N2 mixtures, Combust. Flame, 123 (2000) 140-158.
8
R. Ichimura, K. Hadi, N. Hashimoto, A. Hayakawa, H. Kobayashi, O. Fujita, Extinction limits of an ammonia/air flame propagating in a turbulent field, Fuel, 246 (2019) 178-186. 10.1016/j.fuel.2019.02.110
9
Y. Xia, G. Hashimoto, K. Kadi, N. Hashimoto, A. Hayakawa, H. Kobayashi, O. Fujita, Turbulent burning velocity of ammonia/oxygen/nitrogen premixed flame in O2-enriched air condition, Fuel, 268 (2020) 117383. 10.1016/j.fuel.2020.117383
10
C. Lhuillier, P. Brequigny, N. Lamoureux, F. Contino, C. Mounaim-Rousselle, Experimental investigation on laminar burning velocities of ammonia/hydrogen/ air mixtures at elevated temperatures, Fuel, 263 (2020) 116653. 10.1016/j.fuel.2019.116653
11
A. Ichikawa, A. Hayakawa, Y. Kitagawa, K. Somarathne, T. Kudo, H. Kobayashi, Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures, Int. J. Hydrogen Energ., 40 (2015) 9570-9578. 10.1016/j.ijhydene.2015.04.024
12
C. Lhuillier, P. Brequigny, F. Contino, C. Mounaim- Rousselle, Experimental investigation on ammonia combustion behavior in a spark-ignition engine by means of laminar and turbulent expanding flames, Proc. Combust. Inst., 38 (2020), In press. 10.1016/j.proci.2020.08.058
13
S. Filatyev, J. Driscoll, C. Carter, J. Donbar, Measured properties of turbulent premixed flames for model assesment, including burning velocities, stretch rates, and surface densities, Combust. Flame, 141 (2005) 1-21. 10.1016/j.combustflame.2004.07.010
14
J. Jang, Carbon-free fuel for greenhouse gas reduction - Ammonia(NH3), J. Korean Society of Automotive Engineers, 42 (2020) 52-55.
15
P. Dimitriou, R. Javaid, A review of ammonia as a compression ignition engine fuel, Int. J. Hydrogen Energ., 45 (2020) 7098-7118. 10.1016/j.ijhydene.2019.12.209
16
C. Morch, A. Bjerre, M. Gottrup, S. Sorenson, J. Schramm, Ammonia/hydrogen mixtures in an SI- engine: Engine performance and analysis of a proposed fuel system, Fuel, 90 (2011) 854-864. 10.1016/j.fuel.2010.09.042
17
S. Frigo, R. Gentili, Analysis of the behaviour of a 4-stroke Si engine fuelled with ammonia and hydrogen, Int. J. Hydrogen Energ., 38 (2013) 1607-1615. 10.1016/j.ijhydene.2012.10.114
18
E. Kroch, Ammonia - A fuel for motor buses, J. Inst. Pet., 1945.
19
A. Reiter, S-C. Kong, Combustion and emissions characteristics of compression- ignition engine using dual ammonia-diesel fuel, Fuel, 90 (2011) 87-97. 10.1016/j.fuel.2010.07.055
20
C. Gross, S-C. Kong, Performance characteristics of a compression-ignition engine using direct-injection ammonia-DME mixtures, Fuel, 103 (2013) 1069- 1079. 10.1016/j.fuel.2012.08.026
21
S. Grannell, The operating features of a stoichiometric, ammonia and gasoline dual fueled spark ignition engine, Ph.D. Dissertation, The Univ. of Michigan, 2008. 10.1115/ICES2009-76131
22
J. Jang, Y. Woo, H. Yoon, J. Kim, Y. Lee, J. Kim, Combustion characteristics of ammonia-gasoline dual-fuel system in one liter engine, J. Korean Institute of Gas, 19 (2015) 1-7. 10.7842/kigas.2015.19.6.1
23
A. Valera-Medina, H. Xiao, M. Owen-Jones, W. David, P. Bowen, Ammonia for power, Prog. Energ. Combust., 69 (2018) 63-102. 10.1016/j.pecs.2018.07.001
24
친환경 미래 선박 연료 전망: 선박연료로써의 암모니아, 한국선급, 2019.
25
2030 한국형 친환경선박(Greenship-K) 추진전략-제1차 친환경선박 개발·보급 기본계획('21~'30), 관계부처합동, 2020.
26
E. Bouman, E. Lindstad, A. Rialland, A. Stromman, State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping - A review, Transp. Res. Part D, 52 (2017) 408-421. 10.1016/j.trd.2017.03.022
27
A. Boretti, Novel heavy duty engine concept for operation dual fuel H2-NH3, Int. J. Hydrogen Energ., 37 (2012) 7869-7876. 10.1016/j.ijhydene.2012.01.091
28
수소경제 활성화 로드맵, 관계부처합동, 2019.
29
M. Uchida, S. Ito, T. Suda, T. Fujimori, Performance of ammonia/natural gas co-fired gas turbine with two-stage combustor, AIChE Annual Meeting, 2019.
30
M. Nose, H. Araki, N. Senba, H. Furuichi, S. Tanimura, Development of ammonia utilization technology for large gas turbines for power generation, J. Combust. Japan, 61 (2019) 293-298.
31
Available at: <http://power.mhi.com/news/202103031.html>, 2021.
32
제9차 발전수급기본계획, 산업통상자원부, 2020.
33
T. Ito, H. Ishii, J. Zhang, S. Ishihara, T. Suda, New technology of the ammonia co-firing with pulverized coal to reduce the NOx emission, NH3 Fuel Conference, 2019.
34
J. Zhang, T. Ito, H. Ishii, S. Ishihara, T. Fujumori, Numerical investigation on ammonia co-firing in a pulverized coal combustion facility: Effect of ammonia co-firing ratio, Fuel, 267 (2020) 117166. 10.1016/j.fuel.2020.117166
35
S. Ishihara, J. Zhang, T. Ito, Numerical calculation with detailed chemistry on ammonia co-firing in a coal-fired boiler: Effect of ammonia co-firing ratio on NO emissions, Fuel, 274 (2020) 117742. 10.1016/j.fuel.2020.117742
36
A. Yamamoto, M. Kimoto, Y. Ozawa, S. Hara, Basic co-firing characteristics of ammonia with pulverized coal in a single burner test furnace, NH3 fuel conference, 2018.
37
M. Tamura, T. Gotou, H. Ishii, D. Riechelmann, Experimental investigation of ammonia combustion in a bench scale 1.2MW-thermal pulverised coal firing furnace, Appl. Energ., 277 (2020) 115580. 10.1016/j.apenergy.2020.115580
38
The Chugoku Electric Power, Test results of the ammonia mixed combustion at Mizushima power station unit no.2 and related patent applications, AIChE Annual Meeting, 2018.
39
T. Yoshizaki, Test of the co-firing of ammonia and coal at Mizushima power station, J. Combust. Japan, 61 (2019) 309-312.
40
H. Tanigawa, U, Ouchi, Ammonia mixed burning test at Mizushima power plant unit 2 - Evaluation of the feasibility of using ammonia for power generation, Electric Review, 4 (2018) 52-55.
41
Y. Xia, K. Hadi, G. Hashimoto, N. Hashimoto, O. Fujita, Effect of ammonia/oxygen/nitrogen equivalence ratio on spherical turbulent flame propagation of pulverized coal/ammonia co-combustion, Proc. Combust. Inst., 38 (2020) In press. 10.1016/j.proci.2020.06.102
42
K. Hadi, R. Ichimura, G. Hashimoto, Y. Xia, N. Hashimoto, O. Fujita, Effect of fuel ratio of coal on the turbulent flame speed of ammonia/coal particle cloud co-combustion at atmospheric pressure, Proc. Combust. Inst., 38 (2020) In press. 10.1016/j.proci.2020.06.358
43
N. Nakatsuka, J. Fukui, K. Tainaka, H. Higashino, J. Hayashi, F. Akamatsu, Detailed observation of coal-ammonia co-combustion processes, NH3 Fuel Conference, 2017.
44
H. Lee, S. Choi, An observation of combustion behavior of a single coal particle entrained into hot gas flow, Combust. Flame, 162 (2015) 2610-2620. 10.1016/j.combustflame.2015.03.010
45
H. Lee, S. Choi, Motion of single pulverized coal particles in a hot gas flow field, Combust. Flame, 169 (2016) 63-71. 10.1016/j.combustflame.2016.04.012
46
H. Lee, S. Choi, Volatile flame visualization of single pulverized fuel particles, Powder Technol., 333 (2018) 353-363. 10.1016/j.powtec.2018.04.048
47
R. Murai, N. Nakatuka, H. Higashino, F. Akamatsu, Review of fundamental study on ammonia direct combustion in industrial furnaces, J. Combust. Japan, 61 (2019) 320-325.
48
M. Numata, T. Matsuda, Y. Hagiwara, Y. Yamamoto, Development of impinging jet burner using ammonia fuel for degreasing steel sheets, J. Combust. Japan, 61 (2019) 326-330.
49
Available at: <http://www.jst.go.jp/pr/announce/20150722-6/index.html>, 2015.
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 26
  • No :1
  • Pages :84-106
  • Received Date :2021. 03. 06
  • Revised Date :2021. 03. 08
  • Accepted Date : 2021. 03. 16