All Issue

2020 Vol.25, Issue 4

Research Article

December 2020. pp. 1-7
Abstract
References
1
M.A. Nemitallah, A.A. Abdelhafez, M.A. Habib, Approaches for clean combustion in gas turbines, Springer, Berlin, 2020. 10.1007/978-3-030-44077-0
2
A.H. Lefebvre, The role of fuel preparation in low-emission combustion, J. Eng. Gas Turb. Power, 117 (1995) 617-654. 10.1115/1.2815449
3
S.M. Correa, Power generation and aeropropulsion gas turbines: From combustion science to combustion technology, The 27th Symposium (International) on Combustion, 1998, 1793-1807. 10.1016/S0082-0784(98)80021-0
4
P. Jansohn, Modern gas turbine systems: High efficiency, low emission, fuel flexible power generation, Elsevier, Amsterdam, 2013. 10.1533/9780857096067
5
A. Toffolo, M. Masi, A. Lazzaretto, Low computational cost CFD analysis of thermoacoustic oscillations, Appl. Therm. Eng., 30 (2010) 544-552. 10.1016/j.applthermaleng.2009.10.017
6
M. Gu, M. Zhang, W. Fan, L. Wang, F. Tian, The effect of the mixing characters of primary and secondary air on NOX formation in a swirling pulverized coal flame, Fuel, 84 (2005) 2093-2101. 10.1016/j.fuel.2005.04.019
7
S. Xue, T. Liu, Q. Zhou, T. Xu, H. Hu, Experimental investigation on NOX emission and carbon burnout from a radially biased pulverized coal whirl burner, Fuel Process. Technol., 90 (2009) 1142-1147. 10.1016/j.fuproc.2009.05.011
8
C.O. Paschereit, P. Flohr, H. Knopfel, W. Geng, C. Steinbach, P. Stuber, K. Bengtsson, E. Gutmark, Combustion control by extended EV burner fuel lance, Proceedings of ASME Turbo Expo, 2002, 721-730. 10.1115/GT2002-30462
9
C.O. Magni, D. Hudgins, W. Geng, F. Grimm, Reduction of NOX emissions in Alstom GT11NM engines: development, validation and engine operation experience of the EV-Alpha burner, Proceedings of ASME Turbo Expo, 2012, 255-262. 10.1115/GT2012-68345
10
C.H. Cho, G.M. Baek, C.H. Sohn, J.H. Cho, H.S. Kim, A numerical approach to reduction of NOX emission from swirl premix burner in a gas turbine combustor, Appl. Therm. Eng., 59 (2013) 454-463. 10.1016/j.applthermaleng.2013.06.004
11
Fluent, ANSYS Fluent Theory Guide, Release 2020 R1, ANSYS Inc., 2020.
12
W. Polifke, K. Dobbeling, T. Sattelmayer, D.G. Nicol, P.C. Malte, A NOX prediction scheme for lean-premixed gas turbine combustion based on detailed chemical kinetics, J. Eng. Gas Turbines Power, 118 (1996) 765-772. 10.1115/1.2816992
13
S.R. Turns, An introduction to combustion, McGraw-Hill Companies, New York, 2012.
14
J.W. Jung, Y.C. Lim, H.K. Suh, A study on the NOX formation characteristics and detailed chemical reaction rathways of biodiesel in the various ambient conditions, J. Korean Soc. Combust., 23 (2018) 27-34. 10.15231/jksc.2018.23.2.027
15
M.S. Choi, O. Won, M.K. Kim, J.M. Na, G.M. Choi, D.J. Kim, Effect of the Combustor Geometries on Combustion and NOX Emission Characteristics in a Lean Premixed Micro Gas Turbine, Proceedings of 45th KOSCO SYMPOSIUM, (2012) 229-231.
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 25
  • No :4
  • Pages :1-7
  • Received Date :2020. 08. 29
  • Revised Date :2020. 08. 31
  • Accepted Date : 2020. 09. 13