All Issue

2023 Vol.28, Issue 2 Preview Page

Technical Notes

30 June 2023. pp. 66-77
Abstract
References
1
P.K. Ezhil Kumar, D.P. Mishra, Combustion noise characteristics of an experimental 2D trapped vortex combustor, Aerosp. Sci. Technol. 43 (2015) 388-394. 10.1016/j.ast.2015.03.014
2
W.C. Strahle, Combustion noise, Prog. Energy Combust. Sci. 4(3) (1978) 157-176. 10.1016/0360-1285(78)90002-3
3
C.L. Morfey, Amplification of aerodynamic noise by convected flow inhomogeneities, J. Sound Vib. 31(4) (1973) 391-397. 10.1016/S0022-460X(73)80255-X
4
F.E.C. Culick, Combustion instabilities in liquid-fuelled propulsion systems, in: AGARD Conference Proceedings 430 (1988) 1-73.
5
L. Kabiraj, N. Vishnoi, A. Saurabh, A review on noise-induced dynamics of thermoacoustic systems, in: Dynamics and Control of Energy Systems, Springer (2020) 265-281. 10.1007/978-981-15-0536-2_12
6
F. Richecoeur, L. Hakim, A. Renaud, L. Zimmer, Dmd algorithms for experimental data processing in combustion, in: Proceedings of the Summer Program, Center for Turbulence Research (2012) 459-468.
7
I. Duran, S. Moreau, F. Nicoud, T. Livebardon, E. Bouty, T. Poinsot, Combustion noise in modern aero-engines, Aerospace Lab 7 (2014) 1-11.
8
M. Lee, J. Park, An optimized dynamic mode decomposition model robust to multiplicative noise, SIAM J. Appl. Dyn. Syst. 22(1) (2023) 235-268. 10.1137/21M1443832
9
W.W. Horsthemke, Noise-induced transitions: theory and applications in physics, chemistry, and biology., Springer-Verlag, 1984. 10.1007/978-3-642-46508-6_11
10
L.S. Tsimring, A. Pikovsky, Noise-induced dynamics in bistable systems with delay, Phys. Rev. Lett. 87(25) (2001) 250602. 10.1103/PhysRevLett.87.25060211736552
11
T.C. Lieuwen, V. Yang, Combustion instabilities in gas turbine engines: operational experience, fundamental mechanisms, and modeling, American Institute of Aeronautics and Astronautics, 2005. 10.2514/4.866807
12
M. Lee, System identification near a Hopf bifurcation via the noise-induced dynamics in the fixed-point regime, Ph.D. thesis, The Hong Kong University of Science and Technology (2020).
13
V.S. Burnley, F.E.C. Culick, Influence of random excitations on acoustic instabilities in combustion chambers, AIAA J. 38(8) (2000) 1403-1410. 10.2514/2.1116
14
V. Jegadeesan, R. Sujith, Experimental investigation of noise induced triggering in thermoacoustic systems, Proc. Combust. Inst. 34(2) (2013) 3175-3183. 10.1016/j.proci.2012.05.003
15
I.C. Waugh, M.P. Juniper, Triggering in a thermoacoustic system with stochastic noise, Int. J. Spray Combust. Dyn. 3 (3) (2011) 225-241. 10.1260/1756-8277.3.3.225
16
N. Noiray, B. Schuermans, Deterministic quantities characterizing noise-driven Hopf bifurcations in gas turbine combustors, Int. J. Non-Linear Mech. 50 (2013) 152-163. 10.1016/j.ijnonlinmec.2012.11.008
17
M. Lee, Y. Guan, V. Gupta, L.K.B. Li, Input-output system identification of a thermoacoustic oscillator near a Hopf bifurcation using only fixed-point data, Phys. Rev. E. 101(1) (2020) 013102. 10.1103/PhysRevE.101.01310232069669
18
K. Balasubramanian, R.I. Sujith, Thermoacoustic instability in a Rijke tube: Non-normality and nonlinearity, Phys. Fluids 20(4) (2008) 044103. 10.1063/1.2895634
19
S. Mariappan, R.I. Sujith, P.J. Schmid, Experimental investigation of non-normality of thermoacoustic interaction in an electrically heated Rijke tube, Int. J. Spray Combust. Dyn. 7(4) (2015) 315-352. 10.1260/1756-8277.7.4.315
20
M.P. Juniper, Triggering in the horizontal rijke tube: non-normality, transient growth and bypass transition, J. Fluid Mech. 667 (2011) 272-308. 10.1017/S0022112010004453
21
P.J. Schmid, Nonmodal stability theory, Annu. Rev. Fluid Mech. 39 (2007) 129-162. 10.1146/annurev.fluid.38.050304.092139
22
K.T. Kim, S. Hochgreb, Measurements of triggering and transient growth in a model lean-premixed gas turbine combustor, Combust. Flame 159(3) (2012) 1215-1227. 10.1016/j.combustflame.2011.10.016
23
Z. Wang, P. Liu, B. Jin, W. Ao, Nonlinear characteristics of the triggering combustion instabilities in solid rocket motors, Acta Astronaut. 176 (2020) 371-382. 10.1016/j.actaastro.2020.06.022
24
P. Bergé, Y. Pomeau, C. Vidal, Order within chaos, Wiley-VCH, 1987.
25
E.H. Van Nes, M. Scheffer, Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift, Am. Nat. 169(6) (2007) 738-747. 10.1086/51684517479460
26
M. Scheffer, S.R. Carpenter, T.M. Lenton, J. Bascompte, W. Brock, V. Dakos, J. Van de Koppel, I.A. Van de Leemput, S.A. Levin, E.H. Van Nes, M. Pascual, J. Vandermeer, Anticipating critical transitions, Science 338(6105) (2012) 344-348. 10.1126/science.122524423087241
27
V. Nair, G. Thampi, S. Karuppusamy, S. Gopalan, R.I. Sujith, Loss of chaos in combustion noise as a precursor of impending combustion instability, Int. J. Spray Combust. Dyn. 5(4) (2013) 273-290. 10.1260/1756-8277.5.4.273
28
V. Nair, G. Thampi, R.I. Sujith, Intermittency route to thermoacoustic instability in turbulent combustors, J. Fluid Mech. 756 (2014) 470-487. 10.1017/jfm.2014.468
29
G. Thampi, R.I. Sujith, Intermittent burst oscillations: Signature prior to flame blowout in a turbulent swirl-stabilized combustor, J. Propul. Power 31 (6) (2015) 1661-1671. 10.2514/1.B35526
30
S. Suresha, R.I. Sujith, B. Emerson, T. Lieuwen, Nonlinear dynamics and intermittency in a turbulent reacting wake with density ratio as bifurcation parameter, Phys. Rev. E 94(4) (2016) 042206. 10.1103/PhysRevE.94.04220627841488
31
F.T. Arecchi, R. Badii, A. Politi, Generalized multistability and noise-induced jumps in a nonlinear dynamical system, Phys. Rev. A 32(1) (1985) 402. 10.1103/PhysRevA.32.4029896062
32
A.E. Hramov, A.A. Koronovskii, O.I. Moskalenko, M.O. Zhuravlev, R. Jaimes-Reategui, A.N. Pisarchik, Separation of coexisting dynamical regimes in multistate intermittency based on wavelet spectrum energies in an erbium-doped fiber laser, Phys. Rev. E 93(5) (2016) 052218. 10.1103/PhysRevE.93.05221827300891
33
O.I. Moskalenko, A.A. Koronovskii, M.O. Zhuravlev, A.E. Hramov, Characteristics of noise-induced intermittency, Chaos Solitons Fract. 117 (2018) 269-275. 10.1016/j.chaos.2018.11.001
34
V. Nair, R.I. Sujith, Intermittency as a transition state in combustor dynamics: An explanation for flame dynamics near lean blowout, Combustion Sci. Technol. 187(11) (2015) 1821-1835. 10.1080/00102202.2015.1066339
35
F.E.C. Culick, A review of calculations for unsteady burning of a solid propellant, AIAA Journal 6(12) (1968) 2241-2255. 10.2514/3.4980
36
K.-M. Kim, J.-K. Yoon, Linear stability analysis in a solid-propellant rocket motor, Trans. Korean Soc. Mech. Eng. 19(10) (1995) 2637-2646.
37
S.Y. Lee, Linear stability analysis of a baffled rocket combustor, J. of the Korean Society of Propulsion Engineers 22(3) (2018) 46-52. 10.6108/KSPE.2018.22.3.046
38
B.T. Zinn, E.A. Powell, Nonlinear combustion instability in liquid-propellant rocket engines, Symposium (international) on combustion 13(1) (1971) 491-503. 10.1016/S0082-0784(71)80051-6
39
F.E.C. Culick, Nonlinear behavior of acoustic waves in combustion chambers-I, Acta Astronaut. 3(9-10) (1976) 715-734. 10.1016/0094-5765(76)90107-7
40
F.E.C. Culick, Nonlinear behavior of acoustic waves in combustion chambers-II, Acta Astronaut. 3(9-10) (1976) 735-757. 10.1016/0094-5765(76)90108-9
41
C.E. Johnson, Y. Neumeier, T.C. Lieuwen, B.T. Zinn, Experimental determination of the stability margin of a combustor using exhaust flow and fuel injection rate modulations, Proc. Combust. Inst. 28(1) (2000) 757-763. 10.1016/S0082-0784(00)80278-7
42
T. Lieuwen, Online combustor stability margin assessment using dynamic pressure data, J. Eng. Gas Turbines Power 127(3) (2005) 478-482. 10.1115/1.1850493
43
L. Dai, D. Vorselen, K.S. Korolev, J. Gore, Generic indicators for loss of resilience before a tipping point leading to population collapse, Science 336(6085) (2012) 1175-1177. 10.1126/science.121980522654061
44
E.A. Gopalakrishnan, Y. Sharma, T. John, P.S. Dutta, R.I. Sujith, Early warning signals for critical transitions in a thermoacoustic system, Sci. Rep. 6(1) (2016) 1-10. 10.1038/srep3531027767065PMC5073343
45
H. Gotoda, H. Nikimoto, T. Miyano, S. Tachibana, Dynamic properties of combustion instability in a lean premixed gas-turbine combustor, Chaos 21(1) (2011) 013124. 10.1063/1.356357721456838
46
H. Gotoda, M. Amano, T. Miyano, T. Ikawa, K. Maki, S. Tachibana, Characterization of complexities in combustion instability in a lean premixed gas-turbine model combustor, Chaos 22(4) (2012) 043128. 10.1063/1.476658923278063
47
L. Ricci, A. Politi, Permutation entropy of weakly noise-affected signals, Entropy 24(1) (2021) 54. 10.3390/e2401005435052080PMC8774944
48
T. Hachijo, S. Masuda, T. Kurosaka, H. Gotoda, Early detection of thermoacoustic combustion oscillations using a methodology combining statistical complexity and machine learning, Chaos 29(10) (2019) 103123. 10.1063/1.512081531675849
49
L. Zunino, M. Zanin, B.M. Tabak, D.G. Pérez, O.A. Rosso, Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency, Physica A 389(9) (2010) 1891-1901. 10.1016/j.physa.2010.01.007
50
E. Han, D. Kim, J. Lee, Y. Kim, M. Yi, M. Lee, Analysis of the Hall-effect thruster discharge blowoff using complexity-entropy causality plane, J. Korean Soc. Aeronaut. Space Sci. 51(4) (2023) 263-271. 10.5139/JKSAS.2023.51.4.263
51
M. Lee, Early warning detection of thermoacoustic instability using three-dimensional complexity-entropy causality space, Exp. Therm. Fluid Sci. 130 (2022) 110517. 10.1016/j.expthermflusci.2021.110517
52
C. Aoki, H. Gotoda, S. Yoshida, S. Tachibana, Dynamic behavior of intermittent combustion oscillations in a model rocket engine combustor, J. Appl. Phys. 127(22) (2020) 224903. 10.1063/5.0001900
53
N.B. George, V.R. Unni, M. Raghunathan, R.I. Sujith, Pattern formation during transition from combustion noise to thermoacoustic instability via intermittency, J. Fluid Mech. 849 (2018) 615-644. 10.1017/jfm.2018.427
54
L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Stochastic resonance, Rev. Mod. Phys. 70(1) (1998) 223. 10.1103/RevModPhys.70.223
55
B. McNamara, K. Wiesenfeld, R. Roy, Observation of stochastic resonance in a ring laser, Phys. Rev. Lett. 60(25) (1988) 2626. 10.1103/PhysRevLett.60.262610038407
56
H. Gang, T. Ditzinger, C.-Z. Ning, H. Haken, Stochastic resonance without external periodic force, Phys. Rev. Lett. 71(6) (1993) 807. 10.1103/PhysRevLett.71.80710055373
57
A. Longtin, Autonomous stochastic resonance in bursting neurons, Phys. Rev. E 55(1) (1997) 868. 10.1103/PhysRevE.55.868
58
M. Lee, Y. Zhu, L.K.B. Li, V. Gupta, System identification of a low-density jet via its noise-induced dynamics, J. Fluid Mech. 862 (2019) 200-215. 10.1017/jfm.2018.961
59
Y. Zhu, V. Gupta, L.K.B. Li, Coherence resonance in low-density jets, J. Fluid Mech. 881 (2019) R1. 10.1017/jfm.2019.782
60
A.S. Pikovsky, J. Kurths, Coherence resonance in a noise-driven excitable system, Phys. Rev. Lett. 78(5) (1997) 775. 10.1103/PhysRevLett.78.775
61
L. Kabiraj, R. Steinert, A. Saurabh, C.O. Paschereit, Coherence resonance in a thermoacoustic system, Phys. Rev. E 92(4) (2015) 042909. 10.1103/PhysRevE.92.04290926565306
62
V. Gupta, A. Saurabh, C.O. Paschereit, L. Kabiraj, Numerical results on noise-induced dynamics in the subthreshold regime for thermoacoustic systems, J. Sound Vib. 390 (2017) 55-66. 10.1016/j.jsv.2016.12.004
63
H. Risken, Fokker-Planck Equation, Springer, 1984. 10.1007/978-3-642-96807-5
64
M. Lee, K.T. Kim, J. Park, A numerically efficient output-only system-identification framework for stochastically forced self-sustained oscillators, Under Review.
65
E. Boujo, N. Noiray, Robust identification of harmonic oscillator parameters using the adjoint Fokker-Planck equation, Proc. R. Soc. A 473 (2200) (2017) 20160894. 10.1098/rspa.2016.089428484333PMC5415693
66
M. Lee, D. Kim, J. Lee, Y. Kim, M. Yi, A data-driven approach for analyzing hall thruster discharge instability leading to plasma blowoff, Acta Astronaut. 206 (2023) 1-8. 10.1016/j.actaastro.2023.02.017
67
S. Siegert, R. Friedrich, J. Peinke, Analysis of data sets of stochastic systems, Phys. Lett. A 243(5-6) (1998) 275-280. 10.1016/S0375-9601(98)00283-7
68
N. Noiray, A. Denisov, A method to identify thermoacoustic growth rates in combustion chambers from dynamic pressure time series, Proc. Combust. Inst. 36(3) (2017) 3843-3850. 10.1016/j.proci.2016.06.092
69
O.V. Ushakov, H.-J. Wünsche, F. Henneberger, I. A. Khovanov, L. Schimansky-Geier, M.A. Zaks, Coherence resonance near a Hopf bifurcation, Phys. Rev. Lett. 95(12) (2005) 123903. 10.1103/PhysRevLett.95.12390316197076
70
J. Lee, J. Park, D. Han, K.T. Kim, Subcritical bifurcation of two self-excited interacting swirl flames, J. Korean Soc. Combust. 24(2) (2019) 17-24. 10.15231/jksc.2019.24.2.017
71
M. Lee, K.T. Kim, V. Gupta, L.K.B. Li, System identification and early warning detection of thermoacoustic oscillations in a turbulent combustor using its noise-induced dynamics, Proc. Combust. Inst. 38(4) (2021) 6025-6033. 10.1016/j.proci.2020.06.057
Information
  • Publisher :The Korean Society of Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of the Korean Society of Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 28
  • No :2
  • Pages :66-77
  • Received Date : 2023-04-20
  • Revised Date : 2023-05-10
  • Accepted Date : 2023-05-17