All Issue

2023 Vol.28, Issue 1 Preview Page

Research Article

31 March 2023. pp. 26-32
Abstract
References
1
이후경, 우영민, 이민정, 탄소중립을 위한 암모니아 연소기술의 연구 개발 필요성- Part I 연료 암모니아의 보급확대 배경과 경제성, 한국연소학회지, 26(1) 59-83.
2
이후경, 우영민, 이민정, 탄소중립을 위한 암모니아 연소기술의 연구 개발 필요성- Part II 연구개발 동향과 기술적 타당성 분석.
3
H. Kobayashi, A. Hayakawa, K.D. Kunkuma, A. Somarathne, E.C. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst. 37 (2019) 109-133. 10.1016/j.proci.2018.09.029
4
A.E. Lutz, R.J. Kee, J.F. Grcar, F.M. Rupley, A fortran program for computing opposed-flow diffusion flames, Sandia National Laboratories Report, SAND 96-8243; 1997. 10.2172/568983
5
R.J. Kee, F.M. Rupley, J.A. Miller, Chemkin II: a fortran chemical kinetics package for analysis of gas phase chemival kinetics, Sandia National Laboratories Report, SAND 89-8009B; 1989. 10.2172/5681118PMC2448549
6
R.J. Kee, G. Dixon-Lewis, J. Warnatz, M.E. Coltrin, J.A. Miller, A fortran computer code package for the evaluation of gas-phase multi-component transport, Sandia National Laboratories Report, SAND86-8246; 1996.
7
O. Mathieu, E.L. Petersen, Experimental and modeling study on the high-temperature oxidation of Ammonia and related NOx chemistry, Combust. Flame 162(3) (2015) 554-570. 10.1016/j.combustflame.2014.08.022
8
J.A. Miller, C.T. Bowman, Mechanism and moldeing of nitrogen chemistry in combustion, Prog. Energy Combust. Sci. 15(4) (1989) 287-338. 10.1016/0360-1285(89)90017-8
9
A.A. Konnov, J. De Ruyck, A possible new route for NO formation via N2H3, Combust. Sci. Technol. 168 (2001) 1-46. 10.1080/00102200108907830
10
C. Duynslaegher, F. Contino, J. Vandooren, H. Jeanmart, Modeling of ammonia combustion at low pressure, Combust Flame 159(9) 2799-2805. 10.1016/j.combustflame.2012.06.003
11
P. Dagaut, P. Glarborg, M.U. Alzueta, The oxidation of hydrogen cyanide and related chemistry, 34(1) (2008) 1-46. 10.1016/j.pecs.2007.02.004
12
S.J. Klippenstein, L.B. Harding, P. Glarborg, J.A. Miller, The role of NNH in NO formation and control, Combust. Flame 159 (2011) 774-789. 10.1016/j.combustflame.2010.12.013
13
M.A. Meuller, R.A. Yetter, F.L. Dryer, Kinetic modeling of the CO/H2O/O2/NO/SO2 system: Implication for high-pressure fall-off in the SO2+O (+M) =SO3(+M) reaction, Int. J. Chem. Kinet. 32 (2000) 317-339.
14
P. Dagaut, A. Nicolle, Experimental and kinetic modeling study of the effect of SO2 on the reduction of NO by ammonia, Proc. Combust. Inst. 30 (2005) 1211-1218. 10.1016/j.proci.2004.07.029
15
E.C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, H. Kobayashi, Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames, Combust. Flame 187 (2018) 185-198. 10.1016/j.combustflame.2017.09.002
16
Y. Ju, H. Guo, K. Maruta, F. Liu, On the extinction limit and flammability of non-adiabatic stretched methane-air premixed flames, J. Fluid Mech. 342 (1997) 315-334. 10.1017/S0022112097005636
17
Y.S. Kang, K.M. Lee, J. Park, Mutually interacting SNG-air premixed flames, Fuel 285 (2021) 119065. 10.1016/j.fuel.2020.119065
18
K.S. Sim, K.M. Lee, S.I. Keel, J. Park, A study on flame extinction behavior in downstream interaction between SNG-air oremixed flames, Fuel 210 (2017) 545-556. 10.1016/j.fuel.2017.09.013
19
T.H. Kim, J. Park, O. Fujita, O.B. Kwon, J.H. Park, Downstream interaction between stretched premixed syngas-air flames, Fuel 105 (2013) 739-748. 10.1016/j.fuel.2012.07.038
20
J. Park, S.I. Keel, J.H. Yun, Addition effects of H2 and H2O on flame structure and pollutant emissions in methane-air diffusion flame, Energy & Fuels 21 (2007) 3216-3224. 10.1021/ef700211m
Information
  • Publisher :The Korean Society of Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of the Korean Society of Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 28
  • No :1
  • Pages :26-32
  • Received Date : 2023-01-14
  • Revised Date : 2023-01-29
  • Accepted Date : 2023-01-29