All Issue

2021 Vol.26, Issue 4 Preview Page

Research Article

31 December 2021. pp. 41-50
Abstract
References
1
S.B. Pope, Turbulent Premixed Flames, Annu. Rev. Fluid Mech. 19 (1987) 237-270. 10.1146/annurev.fl.19.010187.001321
2
J.H. Chen, H.G. Im, Correlation of flame speed with stretch in turbulent premixed methane/air flames, Symp. (Int.) Combust. 27 (1998) 819-826. 10.1016/S0082-0784(98)80477-3
3
H. Kido, M. Nakahara, K. Nakashima, J. Hashimoto, Influence of local flame displacement velocity on turbulent burning velocity, Proc. Combust. Inst. 29 (2002) 1855-1861. 10.1016/S1540-7489(02)80225-5
4
N. Peters, The turbulent burning velocity for large-scale and small-scale turbulence, J. Fluid Mech. 384 (1999) 107-132. 10.1017/S0022112098004212
5
J. Kwon, Y. Park, K.Y. Huh, Flamelet characteristics at the leading edge and through the flame brush of statistically steady incompressible turbulent premixed flames, Combust. Flame. 164 (2016) 85-98. 10.1016/j.combustflame.2015.11.003
6
K.Q.N. Kha, V. Robin, A. Mura, M. Champion, Implications of laminar flame finite thickness on the structure of turbulent premixed flames, J. Fluid Mech. 787 (2016) 116-147. 10.1017/jfm.2015.660
7
D. Kim, K.Y. Huh, Conditional relationships for the layered brush structure of turbulent premixed flames in statistical steadiness, Combust. Flame. 204 (2019) 103-115. 10.1016/j.combustflame.2019.01.039
8
A.Y. Klimenko, R.W. Bilger, Conditional moment closure for turbulent combustion, Prog. Energy Combust. Sci. 25 (1999) 595-687. 10.1016/S0360-1285(99)00006-4
9
S. Amzin, N. Swaminathan, J.W. Rogerson, J.H. Kent, Conditional moment closure for turbulent premixed flames, Combust. Sci. Technol. 184 (2012) 1743-1767. 10.1080/00102202.2012.690629
10
M.M. Kamal, R.S. Barlow, S. Hochgreb, Conditional analysis of turbulent premixed and stratified flames on local equivalence ratio and progress of reaction, Combust. Flame. 162 (2015) 3896-3913. 10.1016/j.combustflame.2015.07.026
11
E. Lee, K.Y. Huh, Zone conditional modeling of premixed turbulent flames at a high Damköhler number, Combust. Flame. 138 (2004) 211-224. 10.1016/j.combustflame.2004.05.002
12
N. Chakraborty, A.N. Lipatnikov, Statistics of Conditional Fluid Velocity in the Corrugated Flamelets Regime of Turbulent Premixed Combustion: A Direct Numerical Simulation Study, J. Combust. 2011 (2011) 1-13. 10.1155/2011/628208
13
S. Chaudhuri, H. Kolla, H.L. Dave, E.R. Hawkes, J.H. Chen, C.K. Law, Flame thickness and conditional scalar dissipation rate in a premixed temporal turbulent reacting jet, Combust. Flame. 184 (2017) 273-285. 10.1016/j.combustflame.2017.02.027
14
H. Kolla, J.W. Rogerson, N. Chakraborty, N. Swaminathan, Scalar dissipation rate modeling and its validation, Combust. Sci. Technol. 181 (2009) 518-535. 10.1080/00102200802612419
15
A. Lipatnikov, Fundamentals of Premixed Turbulent Combustion, CRC Press, 2012. 10.1201/b12973
16
R.J. Kee, J. Warnatz, J.A. Miller, Fortran computercode package for the evaluation of gas-phase viscosities, conductivities, and diffusion coefficients. [CHEMKIN], United States, 1983.
17
D.G. Goodwin, R.L. Speth, H.K. Moffat, B.W. Weber, Cantera: An Object-oriented Software Toolkit for ChemicalKinetics, Thermodynamics, and Transport Processes, (2021).
18
R.J. Kee, M.E. Coltrin, P. Glarborg, Chemically Reacting Flow, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2003. 10.1002/0471461296
19
S.G. Davis, A. V. Joshi, H. Wang, F. Egolfopoulos, An optimized kinetic model of H2/CO combustion, Proc. Combust. Inst. 30 (2005). 10.1016/j.proci.2004.08.252
20
G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, J. Gardiner, William C., V. V. Lissianski, Z. Qin, GRI-Mech 3.0,http://www.me.berkeley.edu/gri_mech/
21
S.G. Chumakov, Scaling properties of subgrid-scale energy dissipation, Phys. Fluids. 19 (2007). 10.1063/1.2735001
22
S.G. Chumakov, A priori study of subgrid-scale flux of a passive scalar in isotropic homogeneous turbulence, Phys. Rev. E. 78 (2008). 10.1103/PhysRevE.78.03631318851149
23
S.K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys. 103 (1992) 16-42. 10.1016/0021-9991(92)90324-R
24
C.A. Kennedy, M.H. Carpenter, R.M. Lewis, Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations, Appl. Numer. Math. 35 (2000) 177-219. 10.1016/S0168-9274(99)00141-5
25
L. Guichard, J. Réveillon, R. Hauguel, Direct Numerical Simulation of Statistically Stationary One- and Two-Phase Turbulent Combustion: A Turbulent Injection Procedure, Flow, Turbul. Combust. Former. Applied Sci. Res. 73 (2004) 133-167. 10.1023/B:APPL.0000049273.27776.f5
26
F.A. Williams, Combustion Theory, CRC Press, 2018. 10.1201/9780429494055
27
R.C. Aldredge, V. Vaezi, P.D. Ronney, Premixed-flame propagation in turbulent Taylor-Couette flow, Combust. Flame. 115 (1998) 395-405. 10.1016/S0010-2180(98)00008-X
28
J. Wang, M. Zhang, Y. Xie, Z. Huang, T. Kudo, H. Kobayashi, Correlation of turbulent burning velocity for syngas/air mixtures at high pressure up to 1.0 MPa, Exp. Therm. Fluid Sci. 50 (2013) 90-96. 10.1016/j.expthermflusci.2013.05.008
29
H. Kobayashi, Y. Kawabata, K. Maruta, Experimental study on general correlation of turbulent burning velocity at high pressure, Symp. (Int.) Combust. 27 (1998) 941-948. 10.1016/S0082-0784(98)80492-X
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 26
  • No :4
  • Pages :41-50
  • Received Date :2021. 11. 26
  • Revised Date :2021. 12. 10
  • Accepted Date : 2021. 12. 15