All Issue

2022 Vol.27, Issue 1 Preview Page

Technical Notes

31 March 2022. pp. 37-57
The White House, Federal Sustainability Plan - Catalyzing America's Clean Energy Industries and Jobs, 2021.
Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, 'Fit for 55': delivering the EU's 2030 climate target on the way to climate neutrality, 2021.
관계부처 합동, 2030 국가 온실가스 감축목표(NDC) 상향안, 2021.
관계부처 합동, 2050 탄소중립 시나리오안, 2021.
M. Ji, J. Wang, Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators, Int. J. Hydrogen Energy 46(78) (2021) 38612-38635. 10.1016/j.ijhydene.2021.09.142
이대엽, 2030년 이후 CO2 규제 만족을 위한 e-fuel 기술 전망, 한국산업환경기술원, 2021.
A. Tremel, Electricity-based fuels, Springer International Publishing AG, Cham, Switzerland, 2018. 10.1007/978-3-319-72459-1
A. Manthiram, An Outlook on lithium ion battery technology, ACS Cent. Sci. 3(10) (2017) 1063-1069. 10.1021/acscentsci.7b0028829104922PMC5658750
D.S. Lee, D.W. Fahey, A. Skowron, M.R. Allen, U. Burkhardt, Q. Chen, S.J. Doherty, S. Freeman, P.M. Forster, J. Fuglestvedt, A. Gettelman, R.R. De León, L.L. Lim, M.T. Lund, R.J. Millar, B. Owen, J.E. Penner, G. Pitari, M.J. Prather, R. Sausen, L.J. Wilcox, The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018, Atmos. Environ. 244 (2021) 117834. 10.1016/j.atmosenv.2020.11783432895604PMC7468346
International Air Transport Association, IATA sustainable aviation fuel roadmap, 2015.
International Maritime Organization, Fourth IMO greenhouse gas study, 2020.
관계부처 합동, 2030 한국형 친환경선박 추진전략 - 제1차 친환경선박(Greenship-K) 개발보급 기본계획, 2020.
H.A. Daggash, C.F. Patzschke, C.F. Heuberger, L. Zhu, K. Hellgardt, P.S. Fennell, A.N. Bhave, A. Bardow, N. Mac Dowell, Closing the carbon cycle to maximise climate change mitigation: power-to-methanol vs. power-to-direct air capture, Sustain. Energy Fuels 2(6) (2018) 1153-1169. 10.1039/C8SE00061A
B. Yao, T. Xiao, O.A. Makgae, X. Jie, S. Gonzalez-Cortes, S. Guan, A.I. Kirkland, J.R. Dilworth, H.A. Al-Megren, S.M. Alshihri, P.J. Dobson, G.P. Owen, J.M. Thomas, P.P. Edwards, Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst, Nat. Commun. 11(1) (2020) 6395. 10.1038/s41467-020-20214-z33353949PMC7755904
I. Ridjan, B.V. Mathiesen, D. Connolly, Terminology used for renewable liquid and gaseous fuels based on the conversion of electricity: a review, J. Clean Prod. 112(5) (2016) 3709-3720. 10.1016/j.jclepro.2015.05.117
K. Kieckhäfer, G. Quante, C. Müller, T.S. Spengler, M. Lossau, W. Jonas, Simulation-based analysis of the potential of alternative fuels towards reducing CO2 emissions from aviation, Energies 11(1) (2018) 186. 10.3390/en11010186
A.W. Mortensen, B.V. Mathiesen, A.B. Hansen, S.L. Pedersen, R.D. Grandal, H. Wenzel, The role of electrification and hydrogen in breaking the biomass bottleneck of the renewable energy system - A study on the Danish energy system, Appl. Energy 275 (2020) 115331. 10.1016/j.apenergy.2020.115331
D.F. Ordóñez, N. Shah, G. Guillén-Gosálbez, Economic and full environmental assessment of electrofuels via electrolysis and co-electrolysis considering externalities, Appl. Energy 286 (2021) 116488. 10.1016/j.apenergy.2021.116488
A.M. Oliveira, R.R. Beswick, Y. Yan, A green hydrogen economy for a renewable energy society, Curr. Opin. Chem. Eng. 33 (2021) 100701. 10.1016/j.coche.2021.100701
S. Brynolf, M. Taljegard, M. Grahn, J. Hansson, Electrofuels for the transport sector: A review of production cost, Renew. Sustain. Energy Rev. 81 (2018) 1887-1905. 10.1016/j.rser.2017.05.288
M. Lehtveer, S. Brynolf, M. Grahn, What future for electrofuels in transport? Analysis of cost competitiveness in global climate mitigation, Environ. Sci. Technol. 53(3) (2019) 1690-1697. 10.1021/acs.est.8b0524330633863
M.S. Lester, R. Bramstoft, M. Münster, Analysis on electrofuels in future energy systems: A 2050 case study, Energy 199 (2020) 117408. 10.1016/
E.D. Sherwin, Electrofuel synthesis from variable renewable electricity: an optimization-based techno-economic analysis, Environ. Sci. Technol. 55(11) (2021) 7583-7594. 10.1021/acs.est.0c0795533983018
J. Åkerman, A. Kamb, J. Larsson, J. Nässén, Low-carbon scenarios for long-distance travel 2060, Transport. Res., D 99 (2021) 103010. 10.1016/j.trd.2021.103010
G. Zang, P. Sun, A.A. Elgowainy, A. Bafana, M. Wang, Performance and cost analysis of liquid fuel production from H2 and CO2 based on Fischer-Tropsch process, J. CO2 Util. 46 (2021) 101459. 10.1016/j.jcou.2021.101459
S. Michailos, S. McCord, V. Sick, G. Stokes, P. Styring, Dimethyl ether synthesis via captured CO2 hydrogenation within the power to liquids concept: A techno-economic assessment, Energy Convers. Manage. 184 (2019) 262-276. 10.1016/j.enconman.2019.01.046
S.M. Sarathy, P.B. Brequigny, A.K. Katoch, A.M. Elbaz, W.L. Roberts, R.W. Dibble, F. Foucher, Laminar burning velocities and kinetic modeling of a renewable e-fuel: Formic acid and its mixtures with H2 and CO2, Energy Fuels 34(6) (2020) 7564-7572. 10.1021/acs.energyfuels.0c00944
R.J. Pearson, M.D. Eisaman, J.W.G. Turner, P.P. Edwards, Z. Jiang, V.L. Kuznetsov, K.A. Littau, L. di Marco, S.R.G. Taylor, Energy storage via carbon-neutral fuels made from CO2, water, and renewable energy, P. IEEE 100(2) (2012) 440-460. 10.1109/JPROC.2011.2168369
S. McDonagh, P. Deane, K. Rajendran, J.D. Murphy, Are electrofuels a sustainable transport fuel? Analysis of the effect of controls on carbon, curtailment, and cost of hydrogen, Appl. Energy 247 (2019) 716-730. 10.1016/j.apenergy.2019.04.060
F.G. Albrecht, T. Nguyen, Prospects of electrofuels to defossilize transportation in Denmark - A techno-economic and ecological analysis, Energy 192 (2020) 116511. 10.1016/
F. Urbansky, The potential of synthetic fuels, MTZ worldwide 81(1) (2020) 8-13. 10.1007/s38313-019-0171-4PMC7483074
S. Schemme, J.L. Breuer, M. Köller, S. Meschede, F. Walman, R.C. Samsun, R. Peters, D. Stolten, H2-based synthetic fuels: A techno-economic comparison of alcohol, ether and hydrocarbon production, Int. J. Hydrogen Energy 45(8) (2020) 5395-5414. 10.1016/j.ijhydene.2019.05.028
H.M. Marczinkowski, L. Barros, Technical approaches and institutional alignment to 100% renewable energy system transition of Madeira Island - electrification, smart energy and the required flexible market conditions, Energies 13(17) (2020) 4434. 10.3390/en13174434
M. Borning, L. Doré, M. Wolff, J. Walter, T. Becker, G. Walther, A. Moser, Opportunities and challenges of flexible electricity-based fuel production for the European power system, Sustainability 12(23) (2020) 9844. 10.3390/su12239844
S.A. Isaacs, M.D. Staples, F. Allroggen, D.S. Mallapragada, C.P. Falter and S.R.H. Barrett, Environmental and economic performance of hybrid power-to-liquid and biomass-to-liquid fuel production in the United States, Environ. Sci. Technol. 55(12) (2021) 8247-8257. 10.1021/acs.est.0c0767434081455
A.D. Korberg, S. Brynolf, M. Grahn, I.R. Skov, Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships, Renew. Sust. Energ. Rev. 142 (2021) 110861. 10.1016/j.rser.2021.110861
A. Valera-Medina, F. Amer-Hatem, A.K. Azad, I.C. Dedoussi, M. de Joannon, R.X. Fernandes, P. Glarborg, H. Hashemi, X. He, S. Mashruk, J. McGowan, C. Mounaim-Rouselle, A. Ortiz-Prado, A. Ortiz-Valera, I. Rossetti, B. Shu, M. Yehia H. Xiao M. Costa, Review on ammonia as a potential fuel: From synthesis to economics, Energy Fuels 35(9) (2021) 6964-7029. 10.1021/acs.energyfuels.0c03685
Global Tech Korea, 독일 및 유럽 탄소중립연료 지원정책 및 기술개발 동향, 2021.
김경유, 조철, 자동차산업 탄소중립 추진 동향과 과제, 산업연구원, 2021.
S. Schemme, R.C. Samsun, R. Peters, D. Stolten, Power-to-fuel as a key to sustainable transport systems - An analysis of diesel fuels produced from CO2 and renewable electricity, Fuel 205 (2017) 198-221. 10.1016/j.fuel.2017.05.061
C. Wulf, P. Zapp, A. Schreiber, Review of power- to-X demonstration projects in Europe, Front. Energy Res. 8 (2020) 191. 10.3389/fenrg.2020.00191
G. Zhang, R. Gao, K.W. Jun, S.K. Kim, S.M. Hwang, H.G. Park, G. Guan, Direct conversion of carbon dioxide to liquid fuels and synthetic natural gas using renewable power: Techno-economic analysis, J. CO2 Util. 34 (2019) 293-302. 10.1016/j.jcou.2019.07.005
S.G. Yun, H. Im, A study for sector coupling based on renewable energy to respond to climate change, J. Climate Change Res. 10(2) (2019) 153-159. 10.15531/KSCCR.2019.10.2.153
Agora Verkehrswende, Agora Energiewende, Frontier Economics, The future cost of electricity-based synthetic fuels, 2018.
M. Robinius, A. Otto, P. Heuser, L. Welder, K. Syranidis, D.S. Ryberg, T. Grube, P. Markewitz, R. Peters, D. Stolten, Linking the power and transport sectors - Part 1: The principle of sector coupling, Energies 10(7) (2017) 956. 10.3390/en10070956
H. Lee, Y. Woo, M.J. Lee, The needs for R&D of ammonia combustion technology for carbon neutrality - Part Ⅰ Background and economic feasibility of expanding the supply of fuel ammonia, J. Korean Soc. Combust. 26(1) (2021) 59-83. 10.15231/jksc.2021.26.1.059
J.P. Stempien, M. Ni, Q. Sun, S.H. Chan, Production of sustainable methane from renewable energy and captured carbon dioxide with the use of solid oxide electrolyzer: A thermodynamic assessment, Energy 82 (2015) 714-721. 10.1016/
C. Vogt, M. Monai, G.J. Kramer, B.M. Weckhuysen, The renaissance of the Sabatier reaction and its applications on Earth and in space, Nat. Catal. 2(3) (2019) 188-197. 10.1038/s41929-019-0244-4
C. Arcoumanis, C. Bae, R. Crookes, E. Kinoshita, The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: A review, Fuel 87(7) (2008) 1014-1030. 10.1016/j.fuel.2007.06.007
G. Centi, S. Perathoner, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels, Catal. Today 148(3-4) (2009) 191-205. 10.1016/j.cattod.2009.07.075
C. Graves, S.D. Ebbesen, M. Mogensen, K.S. Lackner, Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy, Renew. Sust. Energ. Rev. 15(1) (2011) 1-23. 10.1016/j.rser.2010.07.014
F.M. Sapountzi, J.M. Gracia, C.J. Weststrate, H.O.A. Fredriksson, J.W. Niemantsverdriet, Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas, Prog. Energy Combust. Sci. 58 (2017) 1-35. 10.1016/j.pecs.2016.09.001
K.S. Im, T.Y. Son, H.N. Jeong, D.J. Kwon, S.Y. Nam, A research trend on diaphragm membranes alkaline water electrolysis system, Memb. J. 31(2) (2021) 133-144. 10.14579/MEMBRANE_JOURNAL.2021.31.2.133
M. Bodner, A. Hofer, V. Hacker, H2 generation from alkaline electrolyzer, WIREs Energy Environ. 4(4) (2015) 365-381. 10.1002/wene.150
M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis, Int. J. Hydrogen Energy 38(12) (2013) 4901-4934. 10.1016/j.ijhydene.2013.01.151
C. Lamy, T. Jaubert, S. Baranton and C. Coutanceau, Clean hydrogen generation through the electrocatalytic oxidation of ethanol in a Proton Exchange Membrane Electrolysis Cell (PEMEC): Effect of the nature and structure of the catalytic anode, J. Power Sources 245 (2014) 927-936. 10.1016/j.jpowsour.2013.07.028
S. Kang, S. Lee, Y. Kim, Y. Lee, K. Ahn, Numerical analysis on a reversible SOFC-SOEC system, The KSME Conference, Nov. 1st-3rd, 2017, 1429-1433.
W. Jung, J. Lee, K. Jeong, D.H. Jeon, System installation and commissioning result of high temperature CO2/steam co-electrolysis, The KOSECC Fall Conference, Nov. 27th-29th, 2019, 19.
W.L. Becker, R.J. Braun, M. Penev, M. Melaina, Production of Fischer-Tropsch liquid fuels from high temperature solid oxide co-electrolysis units, Energy 47(1) (2012) 99-115. 10.1016/
J. Chi, H. Yu, Water electrolysis based on renewable energy for hydrogen production, Chin. J. Catal. 39(3) (2018) 390-394. 10.1016/S1872-2067(17)62949-8
Z. Chehade, C. Mansilla, P. Lucchese, S. Hilliard, J. Proost, Review and analysis of demonstration projects on power-to-X pathways in the world, Int. J. Hydrogen Energy 44 (2019) 27637-27655. 10.1016/j.ijhydene.2019.08.260
S. Kim, Y. Yoo, H. Kim, J. Han, Y.C. Lee, J. Park, Economic and environmental analysis of hydrogen production and transportation methods, The KSNRE Spring Conference, May 15th-17th, 2017, 250.
남궁윤, 기관별 글로벌 저탄소 수소생산비용 전망, 계간가스산업 19(1) (2020) 21-35. 10.38084/2020.19.4.2
관계부처 합동, 제1차 수소경제 이행 기본계획, 2021.
Intergovernmental Panel on Climate Change, Carbon dioxide capture and storage, 2005.
Z. Liang, W. Rongwong, H. Liu, K. Fu, H. Gao, F. Cao, R. Zhang, T. Sema, A. Henni, K. Sumon, D. Nath, D. Gelowitz, W. Srisang, C. Saiwan, A. Benamor, M. Al-Marri, H. Shi, T. Supap, C. Chan, Q. Zhou, M. Abu-Zahra, M. Wilson, W. Olson, R. Idem, P. Tontiwachwuthikul, Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents, Int. J. Greenh. Gas Con. 40 (2015) 26-54. 10.1016/j.ijggc.2015.06.017
G.T. Rochelle, Amine scrubbing for CO2 capture, Science 325 (2009) 1652-1654. 10.1126/science.117673119779188
C. Yu, C. Huang, C. Tan, A review of CO2 capture by absorption and adsorption, Aerosol. Air Qual. Res. 12(5) (2012) 745-769. 10.4209/aaqr.2012.05.0132
M. Fasihi, O. Efimova, C. Breyer, Techno-economic assessment of CO2 direct air capture plants, J. Clean. Prod. 224 (2019) 957-980. 10.1016/j.jclepro.2019.03.086
International Energy Agency, Direct carbon capture, 2021.
C, Yi. Advances of post-combustion carbon capture technology by dry sorbent, Korean Chem. Eng. Res. 48(2) (2010) 140-146.
International Energy Agency, Net zero by 2050 - A roadmap for the global energy sector, 2021.
L. Pastor-Pérez, F. Baibars, E. Le Sache, H. Arellano-García, S. Gu, T.R. Reina, CO2 valorisation via reverse water-gas shift reaction using advanced Cs doped Fe-Cu/Al2O3 catalysts, J. CO2 Util. 21 (2017) 423-428. 10.1016/j.jcou.2017.08.009
Y.A. Daza, J.N. Kuhn, CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels, RSC Adv. 6(55) (2016) 49675-49691. 10.1039/C6RA05414E
J. Kim, J. Kim, H.S. Kim, J. Ryu, S. Kang, S. Jung, S. Lee, Recent catalytic technology trends of RWGS (reverse water gas shift) for CO2 application, J. Climate Change Res. 16(1) (2021) 24-41.
J. Wei, Q. Ge, R. Yao, Z. Wan, C. Fang, L. Guo, H. Xu, J. Sun, Directly converting CO2 into a gasoline fuel, Nat. Commun. 8(1) (2017) 15174. 10.1038/ncomms1517428462925PMC5418575
H. Schulz, Short history and present trends of Fischer-Tropsch synthesis, Appl. Catal., A 186(1-2) (1999) 3-12. 10.1016/S0926-860X(99)00160-X
J. Park, Synfuel production technology: catalyst for Fischer-Tropsch synthesis, J. Korean Oil Chemists' Soc. 30(4) (2013) 726-739. 10.12925/jkocs.2013.30.4.726
D.H. König, N. Baucks, R. Dietrich, A. Wörner, Simulation and evaluation of a process concept for the generation of synthetic fuel from CO2 and H2, Energy 91 (2015) 833-841. 10.1016/
J. Patzlaff, Y. Liu, C. Graffmann, J. Gaube, Studies on product distributions of iron and cobalt catalyzed Fischer-Tropsch synthesis, Appl. Catal., A 186(1-2) (1999) 109-119. 10.1016/S0926-860X(99)00167-2
J. Kim, H. Kim, J. Kim, J. Ryu, S. Kang, M. Park, A review of domestic research trends of Fischer-Tropsch for the production of light hydrocarbons and middle distillates from syngas, Korean Chem. Eng. Res. 57(4) (2019) 565-574.
Arno de Klerk, Fischer-Tropsch refining, Wiley-VCH Verlag & Co. KGaA, Weinhelm, Germany, 2011. 10.1002/9783527635603
H. Kobayashi, A. Hayakawa, K.D.K.A. Somarathne, E.C. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst. 37(1) (2019) 109-133. 10.1016/j.proci.2018.09.029
A. Yapicioglu, I. Dincer, Performance assessment of hydrogen and ammonia combustion with various fuels for power generators, Int. J. Hydrogen Energy 43(45) (2018) 21037-21048. 10.1016/j.ijhydene.2018.08.198
S.E. Hosseini, B. Butler, An overview of development and challenges in hydrogen powered vehicles, Int. J. Green Energy 17(1) (2020) 13-37. 10.1080/15435075.2019.1685999
C.M. White, R.R. Steeper, A.E. Lutz, The hydrogen-fueled internal combustion engine: a technical review, Int. J. Hydrogen Energy 31(10) (2006) 1292-1305. 10.1016/j.ijhydene.2005.12.001
The Royal Society, Ammonia: zero-carbon fertiliser, fuel and energy store, 2020.
C. Smith, A.K. Hill, L. Torrente-Murciano, Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape, Energy Environ. Sci. 13(2) (2020) 331-344. 10.1039/C9EE02873K
N. Ash, T. Scarbrough, Sailing on solar: Could green ammonia decarbonise international shipping?, Environmental Defense Fund, London, 2019.
J. Jang, Y. Woo, Y. Lee, J. Kim, The examination on corrosiveness of vehicle fuel system by ammonia, The KSAE Annual Conference and Exhibition, Nov. 21st-24th, 2012, 669-673.
박연수, 신·재생에너지 연료 혼합의무화제도(RFS) 현황 및 개선과제, 국회입법조사처, 2019.
R.A. Lee, J. Lavoie, From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity, Anim. Front. 3(2) (2013) 6-11. 10.2527/af.2013-0010
J. Andrews, N. Jelley, Energy science, Oxford University Press, Oxford, 2017, 108-148.
P. Schmidt, W. Weindorf, Power-to-liquids: Potentials and perspectives for the future supply of renewable aviation fuel, German Environment Agency, 2016.
A. Jess, P. Kaiser, C. Kern, R.B. Unde, C. von Olshausen, Considerations concerning the energy demand and energy mix for global welfare and stable ecosystems, Chem. Ing. Tech. 83(11) (2011) 1777-1791. 10.1002/cite.201100066
D. Tonini, T. Astrup, LCA of biomass-based energy systems: A case study for Denmark, Appl. Energy 99 (2012) 234-246. 10.1016/j.apenergy.2012.03.006
G. Cinti, A. Baldnelli, A. Di Michele, U. Desideri, Integration of solid oxide electrolyzer and Fischer-Tropsch: A sustainable pathway for synthetic fuel, Appl. Energy 162 (2016) 308-320. 10.1016/j.apenergy.2015.10.053
F.G. Albrecht, D.H. König, N. Baucks, R. Dietrich, A standardized methodology for the techno-economic evaluation of alternative fuels - A case study, Fuel 194 (2017) 511-526. 10.1016/j.fuel.2016.12.003
G. Herz, C. Rix, E. Jacobasch, N. Müller, E. Reichelt, M. Jahn, A. Michaelis, Economic assessment of Power-to-Liquid processes - Influence of electrolysis technology and operating conditions, Appl. Energy 292 (2021) 116655. 10.1016/j.apenergy.2021.116655
Available at: <>, 2018.
Available at: <>, 2021.
Available at: <>, 2021.
Available at: <>, 2021.
Available at: <>, 2021.
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 27
  • No :1
  • Pages :37-57
  • Received Date :2022. 02. 15
  • Revised Date :2022. 03. 02
  • Accepted Date : 2022. 03. 11