All Issue

2023 Vol.28, Issue 4

Research Article

31 December 2023. pp. 1-11
Abstract
References
1
X. Li, A. Lin, C.H. Young, Y. Dai, C.H. Wang, Energetic and economic evaluation of hybrid solar energy systems in a residential net-zero energy building, Appl. Energy. 254 (2019) 113709. 10.1016/j.apenergy.2019.113709
2
Ministry of Land, Infrastructure and Transport, Rules on recognition and management of Building Materials and quality, 2022.
3
B.H. Chun, X. Li, E.J. Im, K.H. Lee, S.H. Kim, Comparison of Pyrolysis Kinetics Between Rigid and Flexible Polyurethanes, J. Ind. Eng. Chem. 13 (2007) 1188-1194.
4
R. Bilbao, J.F. Mastral, J. Ceamanos, M.E. Aldea, Kinetics of the thermal decomposition of polyurethane foams in nitrogen and air atmospheres, J. Anal. Appl. Pyrolysis. 37 (1996) 69-82. 10.1016/0165-2370(96)00936-9
5
M. Xu, J. Guan, J.W. Wang, Pyrolysis Behavior and Kinetics of Polyurethane Insulation Materials from Waste Refrigerators, Adv Mat Res. 356-360 (2011) 1752-1758. 10.4028/www.scientific.net/AMR.356-360.1752
6
D.S.W. Pau, C.M. Fleischmann, M.J. Spearpoint, K.Y. Li, Determination of kinetic properties of polyurethane foam decomposition for pyrolysis modelling, J. Fire Sci. 31 (2013) 356-384. 10.1177/0734904113475858
7
Z. Yao, S. Yu, W. Su, W. Wu, J. Tang, W. Qi, Comparative study on the pyrolysis kinetics of polyurethane foam from wast refrigerators, Waste Manage. Res. 38 (2019) 271-278. 10.1177/0734242X1987768231599207
8
K. Prasad, R. Kramer, N. Marsh, M. Nyden, T. Ohlemiller, M. Zammarano, Numerical simulation of fire spread on polyurethane foam slabs, Proceedings of the 11th International Conference, Fire Mater., 2009, 697-708.
9
S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez- Maqueda, C. Popescu, N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta. 520 (2011) 1-19. 10.1016/j.tca.2011.03.034
10
P. Mckeen, Z. Liao, Pyrolysis model for predicting the fire behavior of flexible polyurethane foam, Build. Simul. 12 (2019) 337-345. 10.1007/s12273-018-0484-2
11
K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk, K. Overholt, Fire Dynamics Simulator Technical Reference Guide Volume 1: Mathematical Model, NIST Special Publication 1018-1, Sixth Edition, NIST, USA, 2016.
12
K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk, K. Overholt, Fire Dynamics Simulator, User's Guide, NIST Special Publication 1019, Sixth Edition, NIST, USA, 2013.
13
M.A. Garrido, R. Font, Pyrolysis and combustion study of flexible polyurethane foam, J. Anal. Appl. Pyrolysis. 113 (2015) 202-215. 10.1016/j.jaap.2014.12.017
14
W. Zhang, J. Zhang, Y. Ding, Q. He, K. Lu, H. Chen, Pyrolysis kinetics and reaction mechanism of expandable polystyrene by multiple kinetics methods, J. Cleaner Prod. 285 (2021) 125042. 10.1016/j.jclepro.2020.125042
15
I. Dubdub, Kinetics Study of Polypropylene Pyrolysis by Non-Isothermal Thermogravimetric Analysis, Materials. 16 (2023), 584 10.3390/ma1602058436676321PMC9863370
16
H.E. Kissinger, Variation of peak temperature with heating rate in differential thermal analysis, J. Res. Natl. Bur. Stand. 57 (1956) 271-221. 10.6028/jres.057.026
17
H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Anal. Chem. 29 (1957) 1702-1706. 10.1021/ac60131a045
18
R.L. Blaine, H.E. Kissinger, Homer Kissinger and the Kissinger Equation, Thermochim. Acta. 540 (2012) 1-6. 10.1016/j.tca.2012.04.008
19
T. Ozawa, A New Method of Analyzing Thermogravimetric Data, Bull. Chem. Soc. Jpn. 38 (1965) 1881-1886. 10.1246/bcsj.38.1881
20
J.H. Flynn, L.A. Wall, General Treatment of the Thermogravimetry of Polymers, J. Res. Natl. Bur. Stand. 70A (1966) 487-523. 10.6028/jres.070A.04331824016PMC6624709
21
T. Akahira, T. Sunose, Joint convention of four electrical institutes, Res. Rep. Chiba Inst. Technol. 16 (1971) 22-31.
22
M.J. Starink, The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods, Thermochim. Acta. 404 (2003) 163-176. 10.1016/S0040-6031(03)00144-8
23
A.W. Coats, J.P. Redfern, Kinetics Parameters from the Thermogravimetic Data, Nature. 201 (1964) 68-69. 10.1038/201068a0
24
M.E. Brown, Introduction to Thermal Analysis, Springer, Dordrecht, 2001.
25
A.M. Pannase, R.K. Singh, B. Ruj, P. Gupta, Decomposition of polyamide via slow pyrolysis: Effect of heating rate and operating temperature on product yield and composition, J. Anal. Appl. Pyrolysis. 151 (2020) 104886. 10.1016/j.jaap.2020.104886
26
T.E. Sadiq, L. Zhang, A.K. Dalai, Thermal and Kinetic Studies on Biomass Degradation via Thermogravimetric Analysis: A Combination of Model- Fitting and Model-Free Approach, ACS Omega. 6 (2021) 22233-22247. 10.1021/acsomega.1c0293735252634PMC8890773
27
ISO 11358-1, Plastics - Thermogravimetry (TG) of Polymers - Part 1: General Principles, 2022.
28
D.S.W. Pau, C.M. Fleischmann, M.A. Delichatsios , Thermal decomposition of flexible polyurethane foams in air, Fire Saf. J. 111 (2020) 102925. 10.1016/j.firesaf.2019.102925
29
Y. Chen, H. He, Z. Liu, Numerical modeling of flexible polyurethane foam combustion under two ignition modes, Fuel. 309 (2022) 122204. 10.1016/j.fuel.2021.122204
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 28
  • No :4
  • Pages :1-11
  • Received Date : 2023-11-30
  • Revised Date : 2023-12-11
  • Accepted Date : 2023-12-13