All Issue

2021 Vol.26, Issue 4

Research Article

31 December 2021. pp. 1-12
9th, The Basic Plan Electricity Demand. Korean Government. 2020.
H.K. Lee, Y.M. Woo, M.J. Lee, The Needs for R&D of Ammonia Combustion Technology for Carbon Neutrality- Part Ⅰ Background and Economic Feasibility of Expanding the Supply of Fuel Ammonia, J. Korean Soc. Combust., 26 (2021) 59-83. 10.15231/jksc.2021.26.1.059
H. K. Lee, Y. M. Woo, M. J. Lee, The Needs for R&D of Ammonia Combustion Technology for Carbon Neutrality- Part Ⅱ R&D Trends and Technical Feasibility Analysis, J. Korean Soc. Combust., 26 (2021) 84-106. 10.15231/jksc.2021.26.1.084
A. Hayakawa, T. Goto, R. Mimoto, Y. Arakawa, T. Kudo, H. Kobayashi, Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures, Fuel, 159 (2015) 98-106. 10.1016/j.fuel.2015.06.070
K. Takizawa, A. Takahashi, K. Tokuhashi, S. Kondo, A. Sekiya, Burning velocity measurements of nitrogen containing compounds, J. Hazard. Mater., 155 (2008) 144-152. 10.1016/j.jhazmat.2007.11.08918207640
U. Pfahl, M. Ross, J. Shepherd, K. Pasamehmetoglu, C. Unal, Flammability limits, ignition energy, and flame speeds in H2-CH4-NH3-N2O-O2-N2 mixtures, Combust. Flame, 123 (2000) 140-158.
R. Ichimura, K. Hadi, N. Hashimoto, A. Hayakawa, H. Kobayashi, O. Fujita, Extinction limits of an ammonia/air flame propagating in a turbulent field, Fuel, 246 (2019) 178-186. 10.1016/j.fuel.2019.02.110
Y. Xia, G. Hashimoto, K. Kadi, N. Hashimoto, A. Hayakawa, H. Kobayashi, O. Fujita, Turbulent burning velocity of ammonia/oxygen/nitrogen premixed flame in O2-enriched air condition, Fuel, 268 (2020) 117383. 10.1016/j.fuel.2020.117383
C. Lhuillier, P. Brequigny, N. Lamoureux, F. Contino, C. Mounaim-Rousselle, Experimental investigation on laminar burning velocities of ammonia/hydrogen/ air mixtures at elevated temperatures, Fuel, 263 (2020) 116653. 10.1016/j.fuel.2019.116653
A. Ichikawa, A. Hayakawa, Y. Kitagawa, K. Somarathne, T. Kudo, H. Kobayashi, Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures, Int. J. Hydrogen Energy, 40 (2015) 9570-9578. 10.1016/j.ijhydene.2015.04.024
C. Lhuillier, P. Brequigny, F. Contino, C. Mounaim- Rousselle, Experimental investigation on ammonia combustion behavior in a spark-ignition engine by means of laminar and turbulent expanding flames, Proc. Combust. Inst., 38 (2020), In press. 10.1016/j.proci.2020.08.058
A. Hayakawa, Y. Arakawa, R. Mimoto, K. Somarathne, T. Kudo, H. Kobayashi, Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor, Int. J. Hydrogen Energy, 42 (2017) 14010-14018. 10.1016/j.ijhydene.2017.01.046
G. Naga, H. Ishii, T. Ito, E. Ohno, Y. Okuma, Development of Co-firing Method of Pulverized Coal and Ammonia to Reduce Greenhouse Gas Emissions, IHI Engineering Review, 53, (2020).
T. Yoshizaki, Test of the co-firing of ammonia and coal at Mizushima power staion, Journal of the Combustion Society of Japan, 61 (2019) 309-312.
J. Zhang, T. Ito, H. Ito, S. Ishihara, T. Fujimori, Numerical investigation on ammonia co-firing in a pulverized coal combustion facility: Effect of ammonia co-firing ratio, Fuel, 267 (2020) 117166 10.1016/j.fuel.2020.117166
A. Yamamoto, M. Kimoto, Y. Ozawa, S. Hara, Basic co-firing characteristics of ammonia with pulverized coal in a single burner test furnace, NH3 fuel conference, October 31th-November 1st, 2018.
H. Kobayasi, A. Hayakawa, K.D. Kunkuma A. Somarathne, E.C. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst. 37 (2019) 109-133. 10.1016/j.proci.2018.09.029
S.I. Kim, T.Y. Chae, Y.W. Lee, W. Yang, S.H. Hong, Performance Evaluation of a Novel Thermal Power Plant Process with Low-Temperature Selective Catalytic Reduction, Energies, 13 (2020) 5558. 10.3390/en13215558
I.L. Pioro, R.B. Duffey, T.J. Dumouchel, Hydraulic resistance of fluids flowing in channels at supercritical pres- sures (survey), Nucl. Eng. Des., 231 (2004) 187-197. 10.1016/j.nucengdes.2004.03.001
P. Basu, C. Kefa, L. Jestin, Boilers and Burners: Design and Theory, Springer-Verlag, New York, (2000) 128-211. 10.1007/978-1-4612-1250-8_6
F.P. Incropera, D.P. Dewitt, T.L. Bergman, A.S. Lavine, Fundamentals of heat and mass transfer, John Wiley & Sons, Inc., New York, USA, (2008) 461-644.
J.L.H.P. Sallevelt, J.A.M. Withag, E.A. Bramer, D. W.F. Brilman, G. Brem, One-dimensional model for heat transfer to a supercritical water flow in tube, J. Supercrit. Fluids, 68 (2012) 1-12. 10.1016/j.supflu.2012.04.003
NIST, Reference fluid thermodynamic and transport properties database (REFPROP): Version 10.
S.I. Kim, S.M. Choi, Practical suggestion for calculating supercritical water-steam properties, Trans. Korean Soc. Mech. Eng. B, 40 (2016) 809-814. 10.3795/KSME-B.2016.40.12.809
W. Wagner et. al., The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, Transactions of the ASME, 122 (2000) 150-182.
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 26
  • No :4
  • Pages :1-12
  • Received Date :2021. 08. 11
  • Revised Date :2021. 09. 29
  • Accepted Date : 2021. 10. 04