All Issue

2022 Vol.27, Issue 4 Preview Page

Research Article

31 December 2022. pp. 50-58
Abstract
References
1
S. Tiwari, G. Pandithurai, S.D. Attri, A.K. Srivastava, V.K. Soni, D.S. Bisht, V. Anil Kumar, Manoj K. Srivastava, Aerosol optical properties and their relationship with meteorological parameters during wintertime in Delhi, India. Atmos. Res. 153 (2015) 465-479. 10.1016/j.atmosres.2014.10.003
2
Y. Li, Q. Chen, H. Zhao, L. Wang, R. Tao, Variations in PM10, PM2. 5 and PM1. 0 in an urban area of the Sichuan Basin and their relation to meteorological factors. Atmosphere 6(1) (2015) 150-163. 10.3390/atmos6010150
3
G. Oberdörster, E. Oberdörster, J. Jan Oberdörster, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113(7) (2005) 823-839. 10.1289/ehp.733916002369PMC1257642
4
Y. Bai, R. E. Brugha, L. Jacobs, J. Grigg, T. S. Nawrot, B. Nemery, Carbon loading in airway macrophages as a biomarker for individual exposure to particulate matter air pollution-A critical review. Environ. Int. 74 (2015) 32-41. 10.1016/j.envint.2014.09.01025318022
5
H.O. Pörtner, D.C. Roberts, H. Adams, C. Adler, P. Aldunce, E. Ali, R. Ara Begum, R. Betts, R.B. Kerr, et al, Climate change 2022: Impacts, adaptation and vulnerability. IPCC Sixth Assessment Report (2022).
6
K.A. Fuller, W.C. Malm, S.M Kreidenweis, Effects of mixing on extinction by carbonaceous particles. J. Geophys. Res. Atmos. 104(D13) (1999) 15941-15954. 10.1029/1998JD100069
7
C.M. Sorensen, Light scattering by fractal aggregates: a review. Aerosol Sci. Technol. 35(2) (2001) 648-687. 10.1080/02786820117868
8
V.A. Markel, V.M Shalaev, Absorption of light by soot particles in micro-droplets of water. J. Quant. Spectrosc. Radiat. Transf. 63(2-6) (1999) 321-339. 10.1016/S0022-4073(99)00022-9
9
H. Eichler, Y.F. Cheng, W. Birmili, A. Nowak, A. Wiedensohler, E. Brüggemann, T. Gnauk, H. Herrmann, D. Althausen, A. Ansmann, R. Engelmann, M. Tesche, M. Wendisch, Y.H. Zhang, M. Hu, S. Liu, L.M. Zeng, Hygroscopic properties and extinction of aerosol particles at ambient relative humidity in South-Eastern China. Atmos. Environ. 42(25) (2008) 6321-6334. 10.1016/j.atmosenv.2008.05.007
10
E. Weingartner, H. Burtscher, U. Baltensperger, Hygroscopic properties of carbon and diesel soot particles. Atmos. Environ. 31(15) (1997) 2311-2327. 10.1016/S1352-2310(97)00023-X
11
I.N. Tang, Thermodynamic and optical properties of mixed‐salt aerosols of atmospheric importance. J. Geophys. Res. Atmos. 102(D2) (1997) 1883-1893. 10.1029/96JD03085
12
I.N. Tang, H.R. Munkelwitz, Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance. J. Geophys. Res. Atmos. 99(D9) (1994) 18801-18808. 10.1029/94JD01345
13
H. Levy, M.D. Schwarzkopf, L. Horowitz, V. Ramaswamy, K.L. Findell, Strong sensitivity of late 21st century climate to projected changes in short‐lived air pollutants. J. Geophys. Res. Atmos. 113(D6) (2008). 10.1029/2007JD009176
14
D.T. Shindell, H. Levy, M.D. Schwarzkopf, L.W. Horowitz, J.F. Lamarque, G. Faluvegi, Multimodel projections of climate change from short‐lived emissions due to human activities. J. Geophys. Res. Atmos. 113(D11) (2008). 10.1029/2007JD009152
15
S.H. Lee, S.H. Park, Experimental Investigations of the Characteristics of the Length Variation of Kerosene-Oxygen Laminar Diffusion Flames. Fire Sci. Eng. 32(6) (2018) 22-27. 10.7731/KIFSE.2018.32.6.022
16
J.G. Radney, R. You, X. Ma, J.M. Conny, M.R. Zachariah, J.T. Hodges, C.D. Zangmeister, Dependence of soot optical properties on particle morphology: measurements and model comparisons. Environ. Sci. Technol. 48(6) (2014) 3169-3176. 10.1021/es404180424548253
17
M. Wozniak, F.R.A. Onofri, S. Barbosa, J. Yon, J. Mroczka, Comparison of methods to derive morphological parameters of multi-fractal samples of particle aggregates from TEM images. J. Aerosol Sci. 47 (2012) 12-26. 10.1016/j.jaerosci.2011.12.008
18
C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7) (2012) 671-675. 10.1038/nmeth.208922930834PMC5554542
19
Ü.Ö. Köylü, G.M. Faeth, Structure of overfire soot in buoyant turbulent diffusion flames at long residence times. Combust. Flame 89(2) (1992) 140-156. 10.1016/0010-2180(92)90024-J
20
R.K. Chakrabarty, H. Moosmüller, W.P. Arnott, M.A. Garro, G. Tian, J.G. Slowik, E.S. Cross, J.H. Han, P. Davidovits, T.B. Onasch, D.R. Worsnop, Low fractal dimension cluster-dilute soot aggregates from a premixed flame. Phys. Rev. Lett. 102(23) (2009) 235504. 10.1103/PhysRevLett.102.23550419658949
21
C. Arnas, C. Dominique, P. Roubin, C. Martin, C. Laffon, P. Parent, C. Brosset, B. Pégourié, Experimental study of different carbon dust growth mechanisms. J. Nucl. Mater. 337 (2005) 69-73. 10.1016/j.jnucmat.2004.09.026
22
U. Koeylue, Y. Xing, D.E. Rosner, Fractal morphology analysis of combustion-generated aggregates using angular light scattering and electron microscope images. Langmuir 11(12) (1995) 4848-4854. 10.1021/la00012a043
23
A. Mita, K. Isono, Effective complex refractive index of atmospheric aerosols containing absorbing substances. J. Meteorol. Soc. Jpn. Ser. II 58(1) (1980) 69-80. 10.2151/jmsj1965.58.1_69
24
S.B. Singham, C.F. Bohren, Scattering of unpolarized and polarized light by particle aggregates of different size and fractal dimension. Langmuir 9(5) (1993) 1431-1435. 10.1021/la00029a044
25
A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 43(8) (2005) 1731-1742. 10.1016/j.carbon.2005.02.018
26
H. Horvath, Atmospheric light absorption-A review. Atmos. Environ. A, Gen. Top. 27(3) (1993) 293-317. 10.1016/0960-1686(93)90104-7
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 27
  • No :4
  • Pages :50-58
  • Received Date :2022. 11. 23
  • Revised Date :2022. 11. 27
  • Accepted Date : 2022. 11. 29