All Issue

2024 Vol.29, Issue 1 Preview Page

Research Article

31 March 2024. pp. 17-32
Abstract
References
1
U.S Energy Information Administration (eia). International Energy Outlook 2021 (IEO2021), eia, U.S. Department of Energy, Washington, DC, USA, 2021; https://www.eia.gov/ieo.
2
H. Kim, U. Jin, Y. Go, M. Choi, I. Gu, M. Baek, K.T. Kim, D. Shin, A Review of Carbon Neutral Gas Turbine Combustion Technology, J. Korean Soc. Combust., 27(2) (2022) 14-38. 10.15231/jksc.2022.27.2.014
3
Korea Energy, Paradigm Shift in Power Generation: Hydrogen Gas Turbine, Korea Energy Newspaper, http://www.koenergy.co.kr/news/articleView.html?idxno=109730, (June 9, 2020).
4
D. Kim, Review on the Development Trend of Hydrogen Gas Turbine Combustion Technology, J. Korean Soc. Combust., 24(4) (2019) 1-10. 10.15231/jksc.2019.24.4.001
5
A.H. Lefebvre, Fuel effects on gas turbine combustion-liner temperature, pattern factor, pollutant emissions, J. Aircr., 21(11) (1984) 887-898. 10.2514/3.45059
6
J. Ziemann, F. Shum, M. Moore, D. Kluyskens, D. Thomaier, N. Zarzalis, H. Eberius, Low-NOx combustors for hydrogen fueled aero engine, Int. J. Hydrogen Energy., 23(4) (1998) 281-288. 10.1016/S0360-3199(97)00054-2
7
J.B. Heywood, T. Mikus, Parameters controlling nitric oxide emissions from gas turbine combustion, In: 41st Meeting on Atmospheric Pollution by Aircraft Engines, England, London, 1973.
8
W.D. York, W.S. Ziminsky, E. Yilmaz, Development and testing of a low NOx hydrogen combustion system for heavy duty gas turbines, in Turbo Expo: Power for Land, Sea, and Air, vol. 44687: American Society of Mechanical Engineers, (2012) 1395-1405. 10.1115/GT2012-69913
9
G. Dahl, F. Suttrop, Engine control and low-NOx combustion for hydrogen fuelled aircraft gas turbines, Int. J. Hydrogen Energy., 23(8) (1988) 695-704. 10.1016/S0360-3199(97)00115-8
10
N.T. Weiland, T.G. Sidwell, P.A. Strakey, Testing of a hydrogen diffusion flame array injector at gas turbine conditions, Combust. Sci. Technol., 185(7) (2013) 1132-1150. 10.1080/00102202.2013.781164
11
C. Marek, T. Smith, K. Kundu, Low emission hydrogen combustors for gas turbines using lean direct injection, 41st AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit, (2005) 3776. 10.2514/6.2005-3776
12
A. Araoye, A. Abdelhafez, R. Ben-Mansour, M. Nemitallah, M. Habib, On the quality of micromixing in an oxy-fuel micromixer burner for gas turbine applications: A numerical study, Chem. Eng. Process., 162 (2021) 108336. 10.1016/j.cep.2021.108336
13
C.L. Cha, S.S. Hwang, Numerical study on combustion characteristics of hydrogen gas turbine combustor using cross flow micro-mix system, J. Korean Soc. Combust., 24(3) (2019), 17-25. 10.15231/jksc.2019.24.3.017
14
H.W. Funke, N. Beckmann, S. Abanteriba, An overview on dry low NOx micromix combustor development for hydrogen-rich gas turbine applications, Int. J. Hydrogen Energy., 44(13) (2019) 6978-6990. 10.1016/j.ijhydene.2019.01.161
15
H.W. Funke, E. Recker, S. Börner, W. Bosschaerts, LES of jets in cross-flow and application to the micromix hydrogen combustion, in Proceedings of the 19th International Symposium on Air Breathing Engine, Montreal Canada, 2009.
16
H.W. Funke, S. Börner, J. Keinz, K. Kusterer, D. Kroniger, J. Kitajima, M. Kazari, A. Horikawa, Numerical and experimental characterization of low NOx Micromix combustion principle for industrial hydrogen gas turbine applications, in Turbo Expo: Power for Land, Sea, and Air, 2012, vol. 44687: American Society of Mechanical Engineers, 1069-1079. 10.1115/GT2012-69421
17
A.H. Ayed, K. Kusterer, H.W. Funke, J. Keinz, C. Striegan, D. Bohn, Experimental and numerical investigations of the dry-low-NOx hydrogen micromix combustion chamber of an industrial gas turbine, Propuls. Power Res., 4(3) (2015) 123-131. 10.1016/j.jppr.2015.07.005
18
X. Chen, H. Wang, X. Wang, X. Liu, Y. Zhu, Fuel/air mixing characteristics of a Micromix burner for hydrogen-rich gas turbine, Energy, 282 (2023) 128786. 10.1016/j.energy.2023.128786
19
X. Chen, H. Wang, C. Wang, X. Wang, N. Wang, X. Liu, Numerical investigation into fuel-air mixing characteristics and cold flow field of single hydrogen-rich Micromix nozzle, Fuel., 332 (2023) 126181. 10.1016/j.fuel.2022.126181
20
J. Choi, M. Ahn, S. Kwak, J.G. Lee, Y. Yoon, Flame structure and NOx emission characteristics in a single hydrogen combustor, Int. J. Hydrogen Energy., 47(68) (2022) 29542-29553. 10.1016/j.ijhydene.2022.06.247
21
H. Lei, B. Khandelwal, Investigation of novel configuration of hydrogen micromix combustor for low NOx emission, AIAA Scitech 2020 Forum., (2020), 1933. 10.2514/6.2020-1933
22
P. Murthy, B. Khandelwal, V. Sethi, R. Singh, Hydrogen as a Fuel for Gas Turbine Engines with Novel Micromix Type Combustors, in 47th AIAA/ ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2011, 5806. 10.2514/6.2011-5806
23
A. Karakurt, B. Khandelwal, V. Sethi, R. Singh, Study of Novel Micromix Combustors to be used in Gas Turbines; using Hydrogen, Hydrogen-Methane, Methane and Kerosene as a fuel, in 48th AIAA/ ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2012, 4265. 10.2514/6.2012-4265
24
H. Lee, S. Hernandez, V. McDonell, E. Steinthorsson, A. Mansour, B. Hollon, Development of flashback resistant low-emission micro-mixing fuel injector for 100% hydrogen and syngas fuels, in Turbo Expo: Power for Land, Sea, and Air, 2009, 48838, 411-419. 10.1115/GT2009-59502
25
A. Haj Ayed, Numerical Characterization and Development of the Dry Low NOx High Hydrogen Content Fuel Micromix Combustion for Gas Turbine Applications, 2017.
26
U. Bhayaraju, M. Hamza, S.M. Jeng, Development of Porous Injection Technology to Reduce Emissions for Dry Low NOx Combustors: Micromixer and Swirl Injectors, in Turbo Expo: Power for Land, Sea, and Air, 2017, vol. 50848: American Society of Mechanical Engineers, V04AT04A059. 10.1115/GT2017-63976
27
A. Landry-Blais, S. Sivić, M. Picard, Micro-mixing combustion for highly recuperated gas turbines: effects of inlet temperature and fuel composition on combustion stability and NOx emissions, J. Eng. Gas Turbine Power., 144(9) (2022) 091014. 10.1115/1.4055190
28
R.H. Chen, J.F. Driscoll, J. Kelly, M. Namazia, R. Schefer, A comparison of bluff-body and swirl- stabilized flames, Combust. Sci. Technol., 71(4-6) (1990) 197-217. 10.1080/00102209008951632
29
N. Schmidt, M. Müller, P. Preuster, L. Zigan, P. Wasserscheid, S. Will, Development and characterization of a low-NOx partially premixed hydrogen burner using numerical simulation and flame diagnostics, Int. J. Hydrogen Energy., 48(41) (2023) 15709-15721. 10.1016/j.ijhydene.2023.01.012
30
G. Bagheri, S.E. Hosseini, M.A. Wahid, Effects of bluff body shape on the flame stability in premixed micro-combustion of hydrogen-air mixture, Appl. Them. Eng., 67(1-2) (2014) 266-272. 10.1016/j.applthermaleng.2014.03.040
31
A. Fan, J. Wan, K. Maruta, H. Yao, W. Liu, Interactions between heat transfer flow field and flame stabilization in a micro-combustor with a bluff body, Int. J. Heat Mass Transfer., 66 (2013) 72-79. 10.1016/j.ijheatmasstransfer.2013.07.024
32
H.W. Funke, S. Börner, W. Krebs, E. Wolf, Experimental characterization of low NOx micromix prototype combustors for industrial gas turbine applications, in Turbo Expo: Power for Land, Sea, and Air, 54624(2011) 343-353. 10.1115/GT2011-45305
33
Y. Yahagi, M. Sekiguti, K. Suzuki, Flow structure and flame stability in a micro can combustor with a baffle plate, Appl. Therm. Eng., 27(4) (2007) 788-794. 10.1016/j.applthermaleng.2006.10.019
34
W.H. Kim, T.S. Park, Effects of noncircular air holes on reacting flow characteristics in a micro can combustor with a seven-hole baffle, Appl. Therm. Eng., 100 (2016) 378-391. 10.1016/j.applthermaleng.2016.02.004
36
S. Hasemann, H. Seliger, P. Kutne, M. Aigner, Experimental and numerical design study for a small scale jet-stabilized micro gas turbine combustor, in Turbo Expo: Power for Land, Sea, and Air, 2018, vol. 51050: American Society of Mechanical Engineers, V04AT04A002. 10.1115/GT2018-75050
37
X. Liu, W. Shao, Y. Tian, Y. Liu, B. Yu, Z. Zang, Y. Xiao, Investigation of H2/CH4-air flame characteristics of a micromix model burner at atmosphere pressure condition, in Turbo Expo: Power for Land, Sea, and Air, 2018, vol. 51067: American Society of Mechanical Engineers, V04BT04A015. 10.1115/GT2018-76276
38
C. Xing, P. Qiu, L. Zhang, X. Yu, X. Chen, Y. Zhao, J. Peng, W. Shen, Research on combustion performance of a micro-mixing combustor for methane- fueled gas turbine, J. Energy Inst., 103 (2022) 72-83. 10.1016/j.joei.2022.05.014
39
Z. Liu, Y. Xiong, Z. Zhang, L. Ren, Y. Liu, Y. Lu, Investigation of a novel combustion stabilization mechanism and combustion characteristics of a multi-nozzle array model combustor, Fuel., 327 (2022) 125-138. 10.1016/j.fuel.2022.125138
40
Z. Liu, Y. Xiong, N. Yang, L. Ren, Y. Liu, S. Zhang, Z. Zhang, X. Xu, Comparison of combustion characteristics of MILD model combustor and multi- nozzle array model combustor fueled hydrogen- methane mixtures, Int. J. Hydrogen Energy., 48(81) (2023) 31802-31812. 10.1016/j.ijhydene.2023.04.326
41
T. Yusaf, A.S.F. Mahamude, K. Kadirgama, D. Ramasamy, K. Farhana, H.A. Dhahad, A. Talib, Sustainable hydrogen energy in aviation-A narrative review, Int. J. Hydrogen Energy., 52(C) (2023), 1026-1045. 10.1016/j.ijhydene.2023.02.086
42
H. W. Funke, J. Keinz, K. Kusterer, A. H. Ayed, M. Kazari, J. Kitajima, A. Horikawa, K. Okada, Experimental and numerical study on optimizing the DLN micromix hydrogen combustion principle for industrial gas turbine applications, in Turbo Expo: Power for Land, Sea, and Air, 2015, vol. 56680: American Society of Mechanical Engineers, V04 AT04A008. 10.1115/GT2015-42043
43
H.W. Funke, J. Keinz, K. Kusterer, A.H. Ayed, M. Kazari, J. Kitajima, A. Horikawa, K. Okada, Experimental and numerical study on optimizing the dry low NOx micromix hydrogen combustion principle for industrial gas turbine applications, J. Therm. Sci. Eng. Appl., 9(2) (2017) 021001. 10.1115/1.4034849
44
M.C. Lee, J. Yoon, S. Joo, J. Kim, J. Hwang, Y. Yoon, Investigation into the cause of high multi-mode combustion instability of H2/CO/CH4 syngas in a partially premixed gas turbine model combustor, Proc. Combust. Inst., 35(3) (2015) 3263-3271. 10.1016/j.proci.2014.07.013
45
D.M. Wicksall, A.K. Agrawal, Acoustics measurements in a lean premixed combustor operated on hydrogen/hydrocarbon fuel mixtures, Int. J. Hydrogen Energy., 32(8) (2007) 1103-1112. 10.1016/j.ijhydene.2006.07.008
46
T. Lee, K.T. Kim, Combustion dynamics of lean fully-premixed hydrogen-air flames in a mesoscale multinozzle array, Combust. Flame., 218 (2020), 234-246. 10.1016/j.combustflame.2020.04.024
47
Z. Cao, Y. Lyu, J. Peng, P. Qiu, L. Liu, C. Yang, Y. Yu, G. Chang, B. Yan, S. Sun, Experimental study of flame evolution, frequency and oscillation characteristics of steam diluted micro-mixing hydrogen flame, Fuel., 301 (2021) 121078. 10.1016/j.fuel.2021.121078
48
J. McClure, D. Abbott, P. Agarwal, X. Sun, G. Babazzi, V. Sethi, P. Gauthier, Comparison of hydrogen micromix flame transfer functions determined using RANS and LES, in Turbo Expo: Power for Land, Sea, and Air, 2019, vol. 58608: American Society of Mechanical Engineers, V003T03A009. 10.1115/GT2019-90538
49
J. Beita, M. Talibi, S. Sadasivuni, R. Balachandran, Thermoacoustic instability considerations for high hydrogen combustion in lean premixed gas turbine combustors: a review. Hydrogen., 2(1) (2021) 33-57. 10.3390/hydrogen2010003
50
S. Dodo, T. Asai, H. Koizumi, H. Takahashi, S. Yoshida, H. Inoue, Combustion characteristics of a multiple-injection combustor for dry low-NOx combustion of hydrogen-rich fuels under medium pressure, in Turbo Expo: Power for Land, Sea, and Air, 54624 (2011) 467-476. 10.1115/GT2011-45459
51
T. Asai, K. Miura, Y. Akiyama, M. Karishuku, K. Yunoki, S. Dodo, N. Horii, Development of fuel- flexible gas turbine combustor, in Proceedings of the 45th Turbomachinery Symposium, 2016: Turbomachinery Laboratories, Texas A&M Engineering Experiment Station.
52
J. Melzak, T. Lieuwen, A. Mansour, High-bandwidth Modulation of H2/Syngas Fuel to Control Combustion Dynamics in Micro-Mixing Lean Premix Systems, Parker-Hannifin Corporation, 2012. 10.2172/104382522867267PMC5448994
53
D. Cecere, E. Giacomazzi, A. Di Nardo, G. Calchetti, Gas turbine combustion technologies for hydrogen blends, Energies., 16(19) (2023) 6829. 10.3390/en16196829
54
N. Tekin, M. Ashikaga, A. Horikawa, H. Funke, Enhancement of fuel flexibility of industrial gas turbines by development of innovative hydrogen combustion systems, Gas Energy., 2 (2018) 1-6.
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 29
  • No :1
  • Pages :17-32
  • Received Date : 2023-12-11
  • Revised Date : 2024-02-16
  • Accepted Date : 2024-02-16