All Issue

2019 Vol.24, Issue 3

September 2019. pp. 1-8
Abstract


References
1 

O. Herbinet, W.J. Pitz, C.K. Westbrook, Detailed chemical kinetic mechanism for the oxidation of biodiesel fuel blend surrogate, Combust. Flame, 157(5) (2010) 893-908.

10.1016/j.combustflame.2009.10.013
2 

W.J. Pitz, N.P. Cernansky, F. Dryer, F. Egolfopoulos, J.T. Farrell, D. Friend, H. Pitsch, Development of an experimental database and chemical kinetic models for surrogate gasoline fuel, SAE 2007-01-0175.

10.4271/2007-01-0175
3 

J.T. Farrell, N.P. Cernansky, F. Dryer, D. Friend, C.A. Hergart, C.K. Law, R.M. McDavid, C.J. Mueller, A.K. Paterl, H. Pitsch, Development of an experimental database and chemical kinetic models for surrogate diesel fuel, SAE 2007-01-0201.

10.4271/2007-01-0201
4 

Z. Luo, M. Plomer, T. Lu, S. Som, D.E. Longman, S. Mani Sarathy, W.J. Pitz, A reduced mechanism for biodiesel surrogates for compression ignition engine applications, Fuel, 99 (2012) 143-153.

10.1016/j.fuel.2012.04.028
5 

T. Turanyi, Reduction of large reaction mechanisms, New J. Chem., 14 (1990) 795-805.

10.1016/0097-8485(90)80054-6
6 

A.S. Tomlin, M.J. Pilling, T. Turanyi, J.H. Merkin, J. Brindley, Mechanism reduction for the oscillatory oxidation of hydrogen: Sensitivity and quasi- steady-state analyses, Combust. Flame, 91(2) (1992) 107-130.

10.1016/0010-2180(92)90094-6
7 

H. Wang, M. Frenklach, Detailed reduction of reaction mechanism for flame modeling, Combust. Flame, 87(3-4) (1991) 365-370.

10.1016/0010-2180(91)90120-Z
8 

C.J. Sung, C.K. Law, J.Y. Chen, An augmented reduced mechanism for methane oxidation with comprehensive global parametric validation, Proc. Combust. Inst., 27(1), 1998, 295-304.

10.1016/S0082-0784(98)80416-5
9 

T.F. Lu, Y. Ju, C.K. Law, Complex CSP for chemistry reduction and analysis, Combust. Flame, 126(1-2) (2001) 1445-1455.

10.1016/S0010-2180(01)00252-8
10 

U. Maas, S.B. Pope, Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space, Combust. Flame, 88(3-4) (1992) 239-264.

10.1016/0010-2180(92)90034-M
11 

T. Lu, C.K. Law, A directed relation graph method for mechanism reduction, Proc. Combust. Inst., 30(1), 2005, 1333-1341.

10.1016/j.proci.2004.08.145
12 

P. Pepiot-Desjardins, H. Pitsch, An efficient error- propagation-based reduction method for large chemical kinetic mechanisms, Combust. Flame, 154(1-2) (2008) 67-81.

10.1016/j.combustflame.2007.10.020
13 

K.E. Niemeyer, C.J. Sung, M.P. Raju, Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis, Combust. Flame, 157(9) (2010) 1760-1770.

10.1016/j.combustflame.2009.12.022
14 

J.W. Jung, Y.C. Lim, H.K. Suh, Biodiesel- combustion analysis through a study on the reduction of the chemical-reaction mechanism, Trans. Korean Soc. Mech. Eng. B, 43(6) (2019) 423-431.

10.3795/KSME-B.2019.43.6.423
15 

H.M. Poon, H.K. Ng, S. Gan, K.M. Pang, J. Schramm, Evaluation and development of chemical kinetic mechanism reduction scheme for biodiesel and diesel fuel surrogates, SAE Int. J. Fuels Lubr., 6(3) (2013) 729-744.

10.4271/2013-01-2630
16 

X. Cheng, H.K. Ng, S. Gan, J.H. Ho, K.M. Pang, Development and validation of a generic reduced chemical kinetic mechanism for CFD spray combustion modeling of biodiesel fuel, Combust. Flame, 162(6) (2015) 2354-2370.

10.1016/j.combustflame.2015.02.003
17 

R.D. Reitz, H. Wang, Q. Jiao, M. Yao, B. Yang, L. Qiu, Development of an n-heptane/toluene/PAH mechanism and its application for combustion and soot prediction, Int. J. Engine Res., 14(5) (2013) 434-451.

10.1177/1468087412471056
18 

The ANSYS, Inc., CHEMKIN-PRO, [cited 2019 May 8], Available at: <https://www.ansys.com/ products/fluids/ansys- chemkin-pro>.

Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 24
  • No :3
  • Pages :1-8
  • Received Date :2019. 05. 09
  • Revised Date :2019. 05. 23
  • Accepted Date : 2019. 05. 29