All Issue

2020 Vol.25, Issue 3 Preview Page

Research Article


September 2020. pp. 31-38
Abstract


References
1 

M. Bramanti, E.A. Salerno, A. Tonazzini, S. Pasini, A. Gray, An acoustic pyrometer system for tomographic thermal imaging in power plant boilers, IEEE Trans. Instrum. Meas., 45 (1996) 159-167.

10.1109/19.481329
2 

Ł. Śladewski, K. Wojdan, K. Świrski, T. Janda, D. Nabagło, J. Chachuła, Optimization of combustion process in coal-fired power plant with utilization of acoustic system for in-furnace temperature measurement, Appl. Therm. Eng., 123 (2017) 711-720.

10.1016/j.applthermaleng.2017.05.078
3 

J. Lee, C. Bong, H. Sun, J. Jeong, M.S. Bak, Thermometry of combustion gases using light emission and acoustic wave from laser-induced sparks, J. Phys. D. Appl. Phys., 52 (2019).

10.1088/1361-6463/ab1fb1
4 

F.Q. Zhao, H. Hiroyasu, The applications of laser Rayleigh scattering to combustion diagnostics, Prog. Energ. Combust. Sci., 19 (1993) 447-485.

10.1016/0360-1285(93)90001-U
5 

S.W. Grib, N. Jiang, P.S. Hsu, P.M. Danehy, S. Roy, Rayleigh-scattering-based two-dimensional temperature measurement at 100-kHz frequency in a reacting flow, Opt. Express, 27 (2019) 27902.

10.1364/OE.27.02790231684551
6 

R.J. Hall, CARS spectra of combustion gases, Combust. Flame, 35 (1979) 47-60.

10.1016/0010-2180(79)90006-3
7 

R.L. Farrow, P.L. Mattern, L.A. Rahn, Comparison between CARS and corrected thermocouple temperature measurements in a diffusion flame, Appl. Opt., 21 (1982) 3119.

10.1364/AO.21.00311920396187
8 

C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Infrared laser-absorption sensing for combustion gases, Prog. Energy Combust. Sci., 60 (2017) 132-176.

10.1016/j.pecs.2016.12.002
9 

D.S. Baer, V. Nagali, E.R. Furlong, R.K. Hanson, M.E. Newfield, Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system, 33rd Aerosp. Sci. Meet. Exhib., 34 (1995).

10.2514/6.1995-426
10 

Y. Zhou, G.C. Mathews, C.S. Goldenstein, Compact, fiber-coupled, single-ended laser-absorption-spectroscopy sensors for high-temperature environments, Appl. Opt., 57 (2018).

10.1364/AO.57.00711730182969
11 

L.H. Ma, L.Y. Lau, W.Ren, Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy, Appl. Phys. B-Lasers O., 123 (2017) 1-9.

10.1007/s00340-017-6645-7
12 

S.W. Kim, M.C. Shin, C.Y. Lee, S.W. Youn, and Y.I. Kim, The experimental study on simultaneous measurements of O2 concentration and temperature of flue Gas using a Single Diode Laser, J. Korean Soc. Combust., 17 (2012) 12-21.

13 

R. Gaudiuso, M. Dell'Aglio, O. de Pascale, G.S. Senesi, A. de Giacomo, Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: A review of methods and results, Sensors, 10 (2010) 7434-7468.

10.3390/s10080743422163611PMC3231154
14 

F. Ferioli, S.G. Buckley, Measurements of hydrocarbons using laser-induced breakdown spectroscopy, Combust. Flame, 144 (2006) 435-447.

10.1016/j.combustflame.2005.08.005
15 

K. Kobayashi, M.S. Bak, H. Tanaka, C. Carter, H. Do, Laser-induced breakdown emission in hydrocarbon fuel mixtures, J. Phys. D. Appl. Phys., 49 (2016).

10.1088/0022-3727/49/15/155201
16 

S. Oh, C.D. Carter, Y. Park, S. Bae, H. Do, "Non- intrusive laser-induced breakdown spectroscopy in flammable mixtures via limiting inverse-bremsstrahlung photon absorption," Combust. Flame, 215 (2020) 259-268.

10.1016/j.combustflame.2020.01.037
17 

I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, B.J. Drouin, J.M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, V.I. Perevalov, A. Perrin, K.P. Shine, M.A.H. Smith, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, A. Barbe, A.G. Császár, V.M. Devi, T. Furtenbacher, J.J. Harrison, J.M. Hartmann, A. Jolly, T.J. Johnson, T. Karman, I. Kleiner, A.A. Kyuberis, J. Loos, O.M. Lyulin, S.T. Massie, S.N. Mikhailenko, N. Moazzen-Ahmadi, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, O.L. Polyansky, M. Rey, M. Rotger, S.W. Sharpe, K. Sung, E. Starikova, S.A. Tashkun, J.V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E.J. Zak, The hitran 2016 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transf., 203 (2017) 3-69.

10.1016/j.jqsrt.2017.06.038
18 

C.J. Dasch, One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods, Appl. Opt., 31 (1992) 1146.

10.1364/AO.31.00114620720732
19 

D.D. Hickstein, S.T. Gibson, R. Yurchak, D.D. Das, M. Ryazanov, A direct comparison of high-spped methods for the numerical Abel transform, Rev. Sci. Instrum., 90 (2019) 065115.

10.1063/1.509263531255037
20 

D.G. Goodwin, H.K. Moffat, R.L.C. Speth, Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, version 2.4.0, Caltech: Pasadena, CA (2018).

21 

G.P. Smith, D.M.G.M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, V.V. Lissianski, and Z. Qin, GRI-MECH 3.0, Available at: <http://combustion.berkeley.edu/gri-mech/>, 1999.

22 

C. Shaddix, Correcting thermocouple measurements for radiation loss: a critical review, in Proceedings of the 33rd National Heat Transfer Conference, M.K. Jensen and M. di Marzo, eds., (1999).

23 

V. Hindasageri, R.P. Vedula, and S.V. Prabhu, Thermocouple error correction for measuring the flame temperature with determination of emissivity and heat transfer coefficient, Rev. Sci. Instrum., 84 (2013).

10.1063/1.479047123464237
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 25
  • No :3
  • Pages :31-38
  • Received Date :2020. 05. 20
  • Revised Date :2020. 07. 28
  • Accepted Date : 2020. 07. 29