All Issue

2024 Vol.29, Issue 1

Research Article

31 March 2024. pp. 1-16
Abstract
References
1
United Nations, The Paris Agreement, 2015.
2
Cooperation of related ministries, 2030 enhanced Nationally Determined Contributions (NDC), 2021.
3
IRENA, Global renewable outlook: Energy transformation 2050, International Renewable Energy Agency, Abu Dhabi, 2020.
4
IEA, Energy technology perspectives 2020, International Energy Agency, Paris, 2020.
5
Bloomberg NEF, New Energy Outlook 2020, Boomberg New Energy Finance, London, 2019.
6
Ministry of Trade, Industry and Energy, 10th basic plane for electricity supply and demand, 2023.
7
H. Kobayashi, A. Hayakawa, K.D.K.A. Somarathne, E.C. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst., 37 (2019) 109-133. 10.1016/j.proci.2018.09.029
8
M. Zhang, X. Wei, J. Wang, Z. Huang, H. Tan, The blow-off and transient characteristics of co- firing ammonia/methane fuels in a swirl combustor, Proc. Combust. Inst., 38 (2021) 5181-5190. 10.1016/j.proci.2020.08.056
9
A. Hayakawa, T. Goto, R. Mimoto, T. Kudo, H. Kobayashi, NO formation/reduction mechanisms of ammonia/air premixed flames at various equivalence ratios and pressure, Mech. Eng. J., 2 (2015) 14-00402. 10.1299/mej.14-00402
10
A. Hayakawa, T. Goto, R. Mimoto, Y. Arakawa, T. Kudo, H. Kobayashi, Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures, Fuel, 159 (2015) 98-106. 10.1016/j.fuel.2015.06.070
11
K.J. Bosschaart, L.P.H. de Goey, The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method, Combust. Flame, 136 (2004) 261-169. 10.1016/j.combustflame.2003.10.005
12
C. Chen, Z. Wang, Z. Yu, X. Han, Y. He, Y. Zhu, A.A. Konnov, Experimental and kinetic modeling study of laminar burning velocity enhancement by ozone additive in NH3+O2+N2 and NH3+CH4/C2H6/ C3H8+air flames, Proc. Combust. Inst., 39 (2023) 4237-4246.
13
J.A. Miller, M.D. Smooke, R.M. Green, R.J. Kee, Kinetic modeling of the oxidation of ammonia in flames, Combust. Sci. Technol., 34 (1983) 149-176. 10.1080/00102208308923691
14
E.C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, and H. Kobayashi, Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames, Combust. Flame, 187 (2018) 185-198. 10.1016/j.combustflame.2017.09.002
15
B. Mei, J. Zhang, X. Shi, Z. Xi, Y. Li, Enhancement of ammonia combustion with partial fuel cracking strategy: Laminar flame propagation and kinetic modeling investigation of NH3/H2/N2/air mixtures up to 10 atm, Combust. Flame, 231 (2021) 111472. 10.1016/j.combustflame.2021.111472
16
C. Lhuillier, P. Brequigny, N. Lamoureux, F. Contino, C. Mounaïm-Rousselle, Experimental investigation on laminar burning velocities of ammonia/hydrogen/air mixtures at elevated temperatures, Fuel, 263 (2020) 116653. 10.1016/j.fuel.2019.116653
17
C. Duynslaegher, H. Jeanmart, J. Vandooren, Ammonia combustion at elevated pressure and temperature conditions, Fuel, 89 (2010) 3540-3545. 10.1016/j.fuel.2010.06.008
18
N. Li, H. Deng, Z. Xu, M. Yan, S. Wei, G. Sun, X. Wen, F. Wang, G. Chen, Experimental study on NH3/H2/air, NH3/CO/air, NH3/H2/CO/air premix combustion in a closed pipe and dynamic simulation at high temperature and pressure, Int. J. Hydrogen Energy, 48 (2023) 34551-34564. 10.1016/j.ijhydene.2023.05.213
19
P. Jansohn, Modern gas turbines systems: high efficiency, low emissions, fuel flexible power generation, WP, Woodhead Publishing, 2013.
20
D.J. Beerer, V.G. McDonell, Autoignition of hydrogen and air inside a continuous flow reactor with application to lean premixed combustion, J. Eng. Gas Turb. Power, 130 (2008) 051507. 10.1115/1.2939007
21
Stationary gas and combustion turbines: New source performance standards (NSPS), U.S. Environment Protection Agency, 2012.
22
R. Pavri, G.D. Moore, Gas turbine emissions and control, Report No. GER-4211, GE Power Systems, 2001.
23
Y.B. Zeldovich, The oxidation of nitrogen in combustion and explosions, Acta Physicochimica, 21 (1946) 557-628.
24
J.L. Toof, A model for the prediction of thermal, prompt, and fuel NOx emissions from combustion turbines, J. Eng. Gas Turb. Power, 108 (1986) 340-347. 10.1115/1.3239909
25
S. Wang, Z. Wang, C. Chen, A.M. Elbaz, Z. Sun, l W.L. Roberts, Applying heat flux method to laminar burning velocity measurements of NH3/CH4/air at elevated pressures and kinetic modeling study, Combust. Flame, 236 (2022) 111788. 10.1016/j.combustflame.2021.111788
26
T. Lieuwen, V. McDonell, E. Petersen, D. Santavicca, Fuel flexibility influences on premixed combustor blowout, flashback, autoignition, and stability, J. Eng. Gas Turb. Power, 130 (2008) 011506. 10.1115/1.2771243
27
X. Han, Z. Wang, M. Costa, Z. Sun, Y. He, K. Cen, Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames, Combust. Flame, 206 (2019) 214-226.
28
E.C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, H. Kobayashi, Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames, Combust. Flame, 187 (2018) 185-198. 10.1016/j.combustflame.2017.09.002
29
G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, V.V. Lissianski, Z. Qin, http://www.me.berkeley.edu/gri_mech/.
30
A.A. Khateeb, T.F. Guiberti, X. Zhu, M. Younes, A. Jamal, W.L. Roberts, Stability limits and exhaust NO performances of ammonia-methane-air swirl flames, Exp. Therm. Fluid Sci., 114 (2020) 110058. 10.1016/j.expthermflusci.2020.110058
31
M. Zhang, Z. An, X. Wei, J. Wang, Z. Huang, H. Tan, Emission analysis of the CH4/NH3/air co-firing fuels in a model combustor, Fuel, 291 (2021) 120135. 10.1016/j.fuel.2021.120135
32
A. Ichikawa, A. Hayakawa, Y. Kitagawa, K.D.K.A. Somarathne, T. Kudo, H. Kobayashi, Laminar burning velocity and Markstein length of ammonia/ hydrogen/air premixed flame at elevated pressure, Int. J. Hydrogen Energy, 40 (2015) 9570-9578. 10.1016/j.ijhydene.2015.04.024
33
C.K. Law, O.C. Kwon, Effects of hydrocarbon substitution on atmospheric hydrogen air flame propagation, Int. J. Hydrogen Energy, 29 (2004) 867-879. 10.1016/j.ijhydene.2003.09.012
34
T. Lieuwen, V. McDonell, D. Santavicca, T. Sattel mayer, Burner development and operability issues associated with steady flowing syngas fired combustors, Combust. Sci. Technol., 180 (2009) 1169-1192. 10.1080/00102200801963375
35
X. Zhang, S.P. Moosakutty, R.P. Rajan, M. Younes, S.M. Sarathy, Combustion chemistry of ammonia/ hydrogen mixtures: Jet-stirred reactor measurements and comprehensive kinetic modeling, Combust. Flame, 234 (2021) 111653. 10.1016/j.combustflame.2021.111653
36
U. Jin, K.T. Kim, Hybrid rich- and lean-premixed ammonia-hydrogen combustion for mitigation of NOx emissions and thermoacoustic instabilities, Combust. Flame, (2024) under review. 10.1016/j.combustflame.2024.113366
37
G.J. Gotama, A. Hayakawa, E.C. Okafor, R. Kano shima, M. Hayashi, T. Kudo, H. Kobayashi, Measurement of the laminar burning velocity and kinetics study of the importance of the hydrogen recovery mechanism of ammonia/hydrogen/air premixed flames, Combust. Flame, 236 (2022) 111753. 10.1016/j.combustflame.2021.111753
38
A.M. Elbaz, S. Wang, T.F. Guiberti, W.L. Roberts, Review on the recent advances on ammonia combustion from the fundamentals to the applications, Fuel Commun., 10 (2022) 100053. 10.1016/j.jfueco.2022.100053
39
M. Zhang, Z. An, L. Wang, X. Wei, B. Jianayihan, J. Wang, Z. Huang, H. Tan, The regulation effect of methane and hydrogen on the emission characteristics of ammonia/air combustion in a model combustor, Int. J. Hydrogen Energy, 46 (2021) 21013-21025. 10.1016/j.ijhydene.2021.03.210
40
J. Choe, W. Sun, T. Ombrello, C. Carter, Plasma assisted ammonia combustion: Simultaneous NOx reduction and flame enhancement, Combust. Flame, (2021) 430-432. 10.1016/j.combustflame.2021.02.016
41
J. Choe, W. Sun, Experimental investigation of non-equilibrium plasma-assisted ammonia flames using NH2* chemiluminescence and OH planar laser- induced fluorescence, Proc. Combust. Inst., (2023) 5439-5446. 10.1016/j.proci.2022.07.001
42
Y. Tang, D. Xie, B. Shi, N. Wang, S. Li, Flammability enhancement of swirling ammonia/air combustion using AC powered gliding arc discharges, Fuel, 313 (2022) 122674. 10.1016/j.fuel.2021.122674
43
G.T. Kim, J. Park, S.H. Chung, C.S. Yoo, Effects of non-thermal plasma on turbulent premixed flames of ammonia/air in a swirl combustor, Fuel, (2022) 124227. 10.1016/j.fuel.2022.124227
44
J. Choe, W. Sun, Blowoff hysteresis, flame morphology and the effect of plasma in a swirling flow, J. Appl. Phys., 51 (2018) 365201. 10.1088/1361-6463/aad4dc
45
H. Takeishi, J. Hayashi, S. Kono, W. Arita, K. Iino, F. Akamatsu, Characteristics of ammonia/N2/O2 laminar flame in oxygen-enriched air condition, Trans. JSME, 181 (2015) 14-00423 (in Japanese). 10.1299/transjsme.14-00423
46
B. Mei, X. Zhang, S. Ma, M. Cui, H. Guo, Z. Cao, Y. Li, Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions, Combust. Flame, 210 (2019) 236-246. 10.1016/j.combustflame.2019.08.033
47
Q. Liu, X. Chen, J. Huang, Y. Shen, Y. Zhang, Z. Liu, The characteristics of flame propagation in ammonia/oxygen mixtures, J. Hazard. Mater., 363 (2019) 187-196. 10.1016/j.jhazmat.2018.09.07330308357
48
H.K. Kim, J.W. Ku, Y.J. Ahn, Y.H. Kim, O.C. Kwon, Effects of O2 enrichment on NH3/air flame propagation and emissions, Int. J. Hydrogen Energy, 46 (2021) 23916-23926. 10.1016/j.ijhydene.2021.04.154
49
Y. Xia, G. Hashimoto, K. Hadi, N. Hashimoto, A. Hayakawa, H. Kobayashi, O. Fujita, Turbulent burning velocity of ammonia/oxygen/nitrogen premixed flame in O2-enriched air condition, Fuel, 268 (2020) 117383. 10.1016/j.fuel.2020.117383
50
S. Mashruk, M. Kovaleva, C.T. Chong, A. Hayakawa, E.C. Okafor, A. Valera-Medina, Nitrogen oxides as a by-product of ammonia/hydrogen combustion regimes, Chem. Eng. Trans., 89 (2021) 613-618.
51
S. Mashruk, M. Kovaleva, A. Alnasif, C.T. Chong, A. Hayakawa, E.C. Okafor, A. Valera-Medina, Nitrogen oxide emissions analysis in ammonia/ hydrogen/air premixed swirling flames, Energy, 260 (2022) 125183. 10.1016/j.energy.2022.125183
52
X. Zhu, A.A. Khateeb, T.F. Guiberti, W.L. Roberts, NO and OH* emission characteristics of very-lean to stoichiometric ammonia-hydrogen-air swirl flames, Proc. Combust. Inst., 38 (2021) 5155-5162. 10.1016/j.proci.2020.06.275
53
A.A. Khateeb, T.F. Guiberti, G. Wang, W.R. Boyette, M. Younes, A. Jamal, W.L. Robert, Stability limits and NO emissions of premixed swirl ammonia-air flames enriched with hydrogen or methane at elevated pressure, Int. J. Hydrogen Energy, 46 (2021) 11969-11981. 10.1016/j.ijhydene.2021.01.036
54
IPCC, Climate change 1995: The IPCC second assessment report, 1995.
55
E.C. Okafor, K.D.K.A. Somarathne, R. Ratthanan, A. Hayakawa, T. Kudo, O. Kurata, N. Iki, T. Tsujimura, H. Furutani, H. Kobayashi, Control of NOx and other emissions in micro gas turbine combustors fuelled with mixtures of methane and ammonia, Combust. Flame, 211 (2020) 406-416. 10.1016/j.combustflame.2019.10.012
56
D. Pugh, A. Valera-Medina, P. Bowen, A. Giles, B. Goktepe, J. Runyon, S. Morris, S. Hewlett, R. Marsh, Emissions performance of staged premixed and diffusion combustor concepts for an NH3/air flame with and without reactant humidification, J. Eng. Gas Turb. Power, 143 (2021) 051012. 10.1115/1.4049451
57
S. Gubbi, R. Cole, B. Emerson, D. Noble, R. Steele, W. Sun, T. Lieuwen, Evaluation of minimum NOx emission from ammonia combustion, in: ASME Conference Proceedings, GT2023-102599. 10.1115/GT2023-102599
58
D. Pugh, J. Runyon, P. Bowen, A. Giles, A. Valera- Medina, R. Marsh, B. Goktepe, S. Hewlett, An investigation of ammonia primary flame combustor concepts for emissions reduction with OH*, NH2* and NH* chemiluminescence at elevated conditions, Proc. Combust. Inst., 38 (2021) 6451-6459. 10.1016/j.proci.2020.06.310
59
A.M. Elbaz, A.M. Albalawi, S. Wang, W.L. Roberts, Stability characteristics of NH3/CH4/air flames in a combustor fired by a double swirl stabilized burner, Proc. Combust. Inst., 39 (2023) 4205-4213. 10.1016/j.proci.2022.06.004
60
A. Cavaliere, M. de Joannon, Mild combustion, Prog. Energy Combust. Sci., 30 (2004) 329-366. 10.1016/j.pecs.2004.02.003
61
G. Sorrentino, P. Sabia, P. Bozza, R. Ragucci, M. de Joannon, Low-NOx conversion of pure ammonia in a cyclonic burner under locally diluted and preheated conditions, Appl. Energy, 254 (2019) 113676. 10.1016/j.apenergy.2019.113676
62
A. Mohammadpour, K. Mazaheri, A. Alipoor, Reaction zone chracteristics, thermal performance and NOx/N2O emissions analyses of ammonia MILD combustion, Int. J. Hydrogen Energy, 47 (2022) 21013-21031. 10.1016/j.ijhydene.2022.04.190
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 29
  • No :1
  • Pages :1-16
  • Received Date : 2023-12-30
  • Revised Date : 2024-01-15
  • Accepted Date : 2024-01-15