All Issue

2022 Vol.27, Issue 1 Preview Page

Technical Notes

31 March 2022. pp. 37-57
Abstract
References
1
The White House, Federal Sustainability Plan - Catalyzing America's Clean Energy Industries and Jobs, 2021.
2
Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, 'Fit for 55': delivering the EU's 2030 climate target on the way to climate neutrality, 2021.
3
관계부처 합동, 2030 국가 온실가스 감축목표(NDC) 상향안, 2021.
4
관계부처 합동, 2050 탄소중립 시나리오안, 2021.
5
M. Ji, J. Wang, Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators, Int. J. Hydrogen Energy 46(78) (2021) 38612-38635. 10.1016/j.ijhydene.2021.09.142
6
이대엽, 2030년 이후 CO2 규제 만족을 위한 e-fuel 기술 전망, 한국산업환경기술원, 2021.
7
A. Tremel, Electricity-based fuels, Springer International Publishing AG, Cham, Switzerland, 2018. 10.1007/978-3-319-72459-1
8
A. Manthiram, An Outlook on lithium ion battery technology, ACS Cent. Sci. 3(10) (2017) 1063-1069. 10.1021/acscentsci.7b0028829104922PMC5658750
9
D.S. Lee, D.W. Fahey, A. Skowron, M.R. Allen, U. Burkhardt, Q. Chen, S.J. Doherty, S. Freeman, P.M. Forster, J. Fuglestvedt, A. Gettelman, R.R. De León, L.L. Lim, M.T. Lund, R.J. Millar, B. Owen, J.E. Penner, G. Pitari, M.J. Prather, R. Sausen, L.J. Wilcox, The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018, Atmos. Environ. 244 (2021) 117834. 10.1016/j.atmosenv.2020.11783432895604PMC7468346
10
International Air Transport Association, IATA sustainable aviation fuel roadmap, 2015.
11
International Maritime Organization, Fourth IMO greenhouse gas study, 2020.
12
관계부처 합동, 2030 한국형 친환경선박 추진전략 - 제1차 친환경선박(Greenship-K) 개발보급 기본계획, 2020.
13
H.A. Daggash, C.F. Patzschke, C.F. Heuberger, L. Zhu, K. Hellgardt, P.S. Fennell, A.N. Bhave, A. Bardow, N. Mac Dowell, Closing the carbon cycle to maximise climate change mitigation: power-to-methanol vs. power-to-direct air capture, Sustain. Energy Fuels 2(6) (2018) 1153-1169. 10.1039/C8SE00061A
14
B. Yao, T. Xiao, O.A. Makgae, X. Jie, S. Gonzalez-Cortes, S. Guan, A.I. Kirkland, J.R. Dilworth, H.A. Al-Megren, S.M. Alshihri, P.J. Dobson, G.P. Owen, J.M. Thomas, P.P. Edwards, Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst, Nat. Commun. 11(1) (2020) 6395. 10.1038/s41467-020-20214-z33353949PMC7755904
15
I. Ridjan, B.V. Mathiesen, D. Connolly, Terminology used for renewable liquid and gaseous fuels based on the conversion of electricity: a review, J. Clean Prod. 112(5) (2016) 3709-3720. 10.1016/j.jclepro.2015.05.117
16
K. Kieckhäfer, G. Quante, C. Müller, T.S. Spengler, M. Lossau, W. Jonas, Simulation-based analysis of the potential of alternative fuels towards reducing CO2 emissions from aviation, Energies 11(1) (2018) 186. 10.3390/en11010186
17
A.W. Mortensen, B.V. Mathiesen, A.B. Hansen, S.L. Pedersen, R.D. Grandal, H. Wenzel, The role of electrification and hydrogen in breaking the biomass bottleneck of the renewable energy system - A study on the Danish energy system, Appl. Energy 275 (2020) 115331. 10.1016/j.apenergy.2020.115331
18
D.F. Ordóñez, N. Shah, G. Guillén-Gosálbez, Economic and full environmental assessment of electrofuels via electrolysis and co-electrolysis considering externalities, Appl. Energy 286 (2021) 116488. 10.1016/j.apenergy.2021.116488
19
A.M. Oliveira, R.R. Beswick, Y. Yan, A green hydrogen economy for a renewable energy society, Curr. Opin. Chem. Eng. 33 (2021) 100701. 10.1016/j.coche.2021.100701
20
S. Brynolf, M. Taljegard, M. Grahn, J. Hansson, Electrofuels for the transport sector: A review of production cost, Renew. Sustain. Energy Rev. 81 (2018) 1887-1905. 10.1016/j.rser.2017.05.288
21
M. Lehtveer, S. Brynolf, M. Grahn, What future for electrofuels in transport? Analysis of cost competitiveness in global climate mitigation, Environ. Sci. Technol. 53(3) (2019) 1690-1697. 10.1021/acs.est.8b0524330633863
22
M.S. Lester, R. Bramstoft, M. Münster, Analysis on electrofuels in future energy systems: A 2050 case study, Energy 199 (2020) 117408. 10.1016/j.energy.2020.117408
23
E.D. Sherwin, Electrofuel synthesis from variable renewable electricity: an optimization-based techno-economic analysis, Environ. Sci. Technol. 55(11) (2021) 7583-7594. 10.1021/acs.est.0c0795533983018
24
J. Åkerman, A. Kamb, J. Larsson, J. Nässén, Low-carbon scenarios for long-distance travel 2060, Transport. Res., D 99 (2021) 103010. 10.1016/j.trd.2021.103010
25
G. Zang, P. Sun, A.A. Elgowainy, A. Bafana, M. Wang, Performance and cost analysis of liquid fuel production from H2 and CO2 based on Fischer-Tropsch process, J. CO2 Util. 46 (2021) 101459. 10.1016/j.jcou.2021.101459
26
S. Michailos, S. McCord, V. Sick, G. Stokes, P. Styring, Dimethyl ether synthesis via captured CO2 hydrogenation within the power to liquids concept: A techno-economic assessment, Energy Convers. Manage. 184 (2019) 262-276. 10.1016/j.enconman.2019.01.046
27
S.M. Sarathy, P.B. Brequigny, A.K. Katoch, A.M. Elbaz, W.L. Roberts, R.W. Dibble, F. Foucher, Laminar burning velocities and kinetic modeling of a renewable e-fuel: Formic acid and its mixtures with H2 and CO2, Energy Fuels 34(6) (2020) 7564-7572. 10.1021/acs.energyfuels.0c00944
28
R.J. Pearson, M.D. Eisaman, J.W.G. Turner, P.P. Edwards, Z. Jiang, V.L. Kuznetsov, K.A. Littau, L. di Marco, S.R.G. Taylor, Energy storage via carbon-neutral fuels made from CO2, water, and renewable energy, P. IEEE 100(2) (2012) 440-460. 10.1109/JPROC.2011.2168369
29
S. McDonagh, P. Deane, K. Rajendran, J.D. Murphy, Are electrofuels a sustainable transport fuel? Analysis of the effect of controls on carbon, curtailment, and cost of hydrogen, Appl. Energy 247 (2019) 716-730. 10.1016/j.apenergy.2019.04.060
30
F.G. Albrecht, T. Nguyen, Prospects of electrofuels to defossilize transportation in Denmark - A techno-economic and ecological analysis, Energy 192 (2020) 116511. 10.1016/j.energy.2019.116511
31
F. Urbansky, The potential of synthetic fuels, MTZ worldwide 81(1) (2020) 8-13. 10.1007/s38313-019-0171-4PMC7483074
32
S. Schemme, J.L. Breuer, M. Köller, S. Meschede, F. Walman, R.C. Samsun, R. Peters, D. Stolten, H2-based synthetic fuels: A techno-economic comparison of alcohol, ether and hydrocarbon production, Int. J. Hydrogen Energy 45(8) (2020) 5395-5414. 10.1016/j.ijhydene.2019.05.028
33
H.M. Marczinkowski, L. Barros, Technical approaches and institutional alignment to 100% renewable energy system transition of Madeira Island - electrification, smart energy and the required flexible market conditions, Energies 13(17) (2020) 4434. 10.3390/en13174434
34
M. Borning, L. Doré, M. Wolff, J. Walter, T. Becker, G. Walther, A. Moser, Opportunities and challenges of flexible electricity-based fuel production for the European power system, Sustainability 12(23) (2020) 9844. 10.3390/su12239844
35
S.A. Isaacs, M.D. Staples, F. Allroggen, D.S. Mallapragada, C.P. Falter and S.R.H. Barrett, Environmental and economic performance of hybrid power-to-liquid and biomass-to-liquid fuel production in the United States, Environ. Sci. Technol. 55(12) (2021) 8247-8257. 10.1021/acs.est.0c0767434081455
36
A.D. Korberg, S. Brynolf, M. Grahn, I.R. Skov, Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships, Renew. Sust. Energ. Rev. 142 (2021) 110861. 10.1016/j.rser.2021.110861
37
A. Valera-Medina, F. Amer-Hatem, A.K. Azad, I.C. Dedoussi, M. de Joannon, R.X. Fernandes, P. Glarborg, H. Hashemi, X. He, S. Mashruk, J. McGowan, C. Mounaim-Rouselle, A. Ortiz-Prado, A. Ortiz-Valera, I. Rossetti, B. Shu, M. Yehia H. Xiao M. Costa, Review on ammonia as a potential fuel: From synthesis to economics, Energy Fuels 35(9) (2021) 6964-7029. 10.1021/acs.energyfuels.0c03685
38
Global Tech Korea, 독일 및 유럽 탄소중립연료 지원정책 및 기술개발 동향, 2021.
39
김경유, 조철, 자동차산업 탄소중립 추진 동향과 과제, 산업연구원, 2021.
40
S. Schemme, R.C. Samsun, R. Peters, D. Stolten, Power-to-fuel as a key to sustainable transport systems - An analysis of diesel fuels produced from CO2 and renewable electricity, Fuel 205 (2017) 198-221. 10.1016/j.fuel.2017.05.061
41
C. Wulf, P. Zapp, A. Schreiber, Review of power- to-X demonstration projects in Europe, Front. Energy Res. 8 (2020) 191. 10.3389/fenrg.2020.00191
42
G. Zhang, R. Gao, K.W. Jun, S.K. Kim, S.M. Hwang, H.G. Park, G. Guan, Direct conversion of carbon dioxide to liquid fuels and synthetic natural gas using renewable power: Techno-economic analysis, J. CO2 Util. 34 (2019) 293-302. 10.1016/j.jcou.2019.07.005
43
S.G. Yun, H. Im, A study for sector coupling based on renewable energy to respond to climate change, J. Climate Change Res. 10(2) (2019) 153-159. 10.15531/KSCCR.2019.10.2.153
44
Agora Verkehrswende, Agora Energiewende, Frontier Economics, The future cost of electricity-based synthetic fuels, 2018.
45
M. Robinius, A. Otto, P. Heuser, L. Welder, K. Syranidis, D.S. Ryberg, T. Grube, P. Markewitz, R. Peters, D. Stolten, Linking the power and transport sectors - Part 1: The principle of sector coupling, Energies 10(7) (2017) 956. 10.3390/en10070956
46
H. Lee, Y. Woo, M.J. Lee, The needs for R&D of ammonia combustion technology for carbon neutrality - Part Ⅰ Background and economic feasibility of expanding the supply of fuel ammonia, J. Korean Soc. Combust. 26(1) (2021) 59-83. 10.15231/jksc.2021.26.1.059
47
J.P. Stempien, M. Ni, Q. Sun, S.H. Chan, Production of sustainable methane from renewable energy and captured carbon dioxide with the use of solid oxide electrolyzer: A thermodynamic assessment, Energy 82 (2015) 714-721. 10.1016/j.energy.2015.01.081
48
C. Vogt, M. Monai, G.J. Kramer, B.M. Weckhuysen, The renaissance of the Sabatier reaction and its applications on Earth and in space, Nat. Catal. 2(3) (2019) 188-197. 10.1038/s41929-019-0244-4
49
C. Arcoumanis, C. Bae, R. Crookes, E. Kinoshita, The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: A review, Fuel 87(7) (2008) 1014-1030. 10.1016/j.fuel.2007.06.007
50
G. Centi, S. Perathoner, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels, Catal. Today 148(3-4) (2009) 191-205. 10.1016/j.cattod.2009.07.075
51
C. Graves, S.D. Ebbesen, M. Mogensen, K.S. Lackner, Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy, Renew. Sust. Energ. Rev. 15(1) (2011) 1-23. 10.1016/j.rser.2010.07.014
52
F.M. Sapountzi, J.M. Gracia, C.J. Weststrate, H.O.A. Fredriksson, J.W. Niemantsverdriet, Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas, Prog. Energy Combust. Sci. 58 (2017) 1-35. 10.1016/j.pecs.2016.09.001
53
K.S. Im, T.Y. Son, H.N. Jeong, D.J. Kwon, S.Y. Nam, A research trend on diaphragm membranes alkaline water electrolysis system, Memb. J. 31(2) (2021) 133-144. 10.14579/MEMBRANE_JOURNAL.2021.31.2.133
54
M. Bodner, A. Hofer, V. Hacker, H2 generation from alkaline electrolyzer, WIREs Energy Environ. 4(4) (2015) 365-381. 10.1002/wene.150
55
M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis, Int. J. Hydrogen Energy 38(12) (2013) 4901-4934. 10.1016/j.ijhydene.2013.01.151
56
C. Lamy, T. Jaubert, S. Baranton and C. Coutanceau, Clean hydrogen generation through the electrocatalytic oxidation of ethanol in a Proton Exchange Membrane Electrolysis Cell (PEMEC): Effect of the nature and structure of the catalytic anode, J. Power Sources 245 (2014) 927-936. 10.1016/j.jpowsour.2013.07.028
57
S. Kang, S. Lee, Y. Kim, Y. Lee, K. Ahn, Numerical analysis on a reversible SOFC-SOEC system, The KSME Conference, Nov. 1st-3rd, 2017, 1429-1433.
58
W. Jung, J. Lee, K. Jeong, D.H. Jeon, System installation and commissioning result of high temperature CO2/steam co-electrolysis, The KOSECC Fall Conference, Nov. 27th-29th, 2019, 19.
59
W.L. Becker, R.J. Braun, M. Penev, M. Melaina, Production of Fischer-Tropsch liquid fuels from high temperature solid oxide co-electrolysis units, Energy 47(1) (2012) 99-115. 10.1016/j.energy.2012.08.047
60
J. Chi, H. Yu, Water electrolysis based on renewable energy for hydrogen production, Chin. J. Catal. 39(3) (2018) 390-394. 10.1016/S1872-2067(17)62949-8
61
Z. Chehade, C. Mansilla, P. Lucchese, S. Hilliard, J. Proost, Review and analysis of demonstration projects on power-to-X pathways in the world, Int. J. Hydrogen Energy 44 (2019) 27637-27655. 10.1016/j.ijhydene.2019.08.260
62
S. Kim, Y. Yoo, H. Kim, J. Han, Y.C. Lee, J. Park, Economic and environmental analysis of hydrogen production and transportation methods, The KSNRE Spring Conference, May 15th-17th, 2017, 250.
63
남궁윤, 기관별 글로벌 저탄소 수소생산비용 전망, 계간가스산업 19(1) (2020) 21-35. 10.38084/2020.19.4.2
64
관계부처 합동, 제1차 수소경제 이행 기본계획, 2021.
65
Intergovernmental Panel on Climate Change, Carbon dioxide capture and storage, 2005.
66
Z. Liang, W. Rongwong, H. Liu, K. Fu, H. Gao, F. Cao, R. Zhang, T. Sema, A. Henni, K. Sumon, D. Nath, D. Gelowitz, W. Srisang, C. Saiwan, A. Benamor, M. Al-Marri, H. Shi, T. Supap, C. Chan, Q. Zhou, M. Abu-Zahra, M. Wilson, W. Olson, R. Idem, P. Tontiwachwuthikul, Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents, Int. J. Greenh. Gas Con. 40 (2015) 26-54. 10.1016/j.ijggc.2015.06.017
67
G.T. Rochelle, Amine scrubbing for CO2 capture, Science 325 (2009) 1652-1654. 10.1126/science.117673119779188
68
C. Yu, C. Huang, C. Tan, A review of CO2 capture by absorption and adsorption, Aerosol. Air Qual. Res. 12(5) (2012) 745-769. 10.4209/aaqr.2012.05.0132
69
M. Fasihi, O. Efimova, C. Breyer, Techno-economic assessment of CO2 direct air capture plants, J. Clean. Prod. 224 (2019) 957-980. 10.1016/j.jclepro.2019.03.086
70
International Energy Agency, Direct carbon capture, 2021.
71
C, Yi. Advances of post-combustion carbon capture technology by dry sorbent, Korean Chem. Eng. Res. 48(2) (2010) 140-146.
72
International Energy Agency, Net zero by 2050 - A roadmap for the global energy sector, 2021.
73
L. Pastor-Pérez, F. Baibars, E. Le Sache, H. Arellano-García, S. Gu, T.R. Reina, CO2 valorisation via reverse water-gas shift reaction using advanced Cs doped Fe-Cu/Al2O3 catalysts, J. CO2 Util. 21 (2017) 423-428. 10.1016/j.jcou.2017.08.009
74
Y.A. Daza, J.N. Kuhn, CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels, RSC Adv. 6(55) (2016) 49675-49691. 10.1039/C6RA05414E
75
J. Kim, J. Kim, H.S. Kim, J. Ryu, S. Kang, S. Jung, S. Lee, Recent catalytic technology trends of RWGS (reverse water gas shift) for CO2 application, J. Climate Change Res. 16(1) (2021) 24-41.
76
J. Wei, Q. Ge, R. Yao, Z. Wan, C. Fang, L. Guo, H. Xu, J. Sun, Directly converting CO2 into a gasoline fuel, Nat. Commun. 8(1) (2017) 15174. 10.1038/ncomms1517428462925PMC5418575
77
H. Schulz, Short history and present trends of Fischer-Tropsch synthesis, Appl. Catal., A 186(1-2) (1999) 3-12. 10.1016/S0926-860X(99)00160-X
78
J. Park, Synfuel production technology: catalyst for Fischer-Tropsch synthesis, J. Korean Oil Chemists' Soc. 30(4) (2013) 726-739. 10.12925/jkocs.2013.30.4.726
79
D.H. König, N. Baucks, R. Dietrich, A. Wörner, Simulation and evaluation of a process concept for the generation of synthetic fuel from CO2 and H2, Energy 91 (2015) 833-841. 10.1016/j.energy.2015.08.099
80
J. Patzlaff, Y. Liu, C. Graffmann, J. Gaube, Studies on product distributions of iron and cobalt catalyzed Fischer-Tropsch synthesis, Appl. Catal., A 186(1-2) (1999) 109-119. 10.1016/S0926-860X(99)00167-2
81
J. Kim, H. Kim, J. Kim, J. Ryu, S. Kang, M. Park, A review of domestic research trends of Fischer-Tropsch for the production of light hydrocarbons and middle distillates from syngas, Korean Chem. Eng. Res. 57(4) (2019) 565-574.
82
Arno de Klerk, Fischer-Tropsch refining, Wiley-VCH Verlag & Co. KGaA, Weinhelm, Germany, 2011. 10.1002/9783527635603
83
H. Kobayashi, A. Hayakawa, K.D.K.A. Somarathne, E.C. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst. 37(1) (2019) 109-133. 10.1016/j.proci.2018.09.029
84
A. Yapicioglu, I. Dincer, Performance assessment of hydrogen and ammonia combustion with various fuels for power generators, Int. J. Hydrogen Energy 43(45) (2018) 21037-21048. 10.1016/j.ijhydene.2018.08.198
85
S.E. Hosseini, B. Butler, An overview of development and challenges in hydrogen powered vehicles, Int. J. Green Energy 17(1) (2020) 13-37. 10.1080/15435075.2019.1685999
86
C.M. White, R.R. Steeper, A.E. Lutz, The hydrogen-fueled internal combustion engine: a technical review, Int. J. Hydrogen Energy 31(10) (2006) 1292-1305. 10.1016/j.ijhydene.2005.12.001
87
The Royal Society, Ammonia: zero-carbon fertiliser, fuel and energy store, 2020.
88
C. Smith, A.K. Hill, L. Torrente-Murciano, Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape, Energy Environ. Sci. 13(2) (2020) 331-344. 10.1039/C9EE02873K
89
N. Ash, T. Scarbrough, Sailing on solar: Could green ammonia decarbonise international shipping?, Environmental Defense Fund, London, 2019.
90
J. Jang, Y. Woo, Y. Lee, J. Kim, The examination on corrosiveness of vehicle fuel system by ammonia, The KSAE Annual Conference and Exhibition, Nov. 21st-24th, 2012, 669-673.
91
박연수, 신·재생에너지 연료 혼합의무화제도(RFS) 현황 및 개선과제, 국회입법조사처, 2019.
92
R.A. Lee, J. Lavoie, From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity, Anim. Front. 3(2) (2013) 6-11. 10.2527/af.2013-0010
93
J. Andrews, N. Jelley, Energy science, Oxford University Press, Oxford, 2017, 108-148.
94
P. Schmidt, W. Weindorf, Power-to-liquids: Potentials and perspectives for the future supply of renewable aviation fuel, German Environment Agency, 2016.
95
A. Jess, P. Kaiser, C. Kern, R.B. Unde, C. von Olshausen, Considerations concerning the energy demand and energy mix for global welfare and stable ecosystems, Chem. Ing. Tech. 83(11) (2011) 1777-1791. 10.1002/cite.201100066
96
D. Tonini, T. Astrup, LCA of biomass-based energy systems: A case study for Denmark, Appl. Energy 99 (2012) 234-246. 10.1016/j.apenergy.2012.03.006
97
G. Cinti, A. Baldnelli, A. Di Michele, U. Desideri, Integration of solid oxide electrolyzer and Fischer-Tropsch: A sustainable pathway for synthetic fuel, Appl. Energy 162 (2016) 308-320. 10.1016/j.apenergy.2015.10.053
98
F.G. Albrecht, D.H. König, N. Baucks, R. Dietrich, A standardized methodology for the techno-economic evaluation of alternative fuels - A case study, Fuel 194 (2017) 511-526. 10.1016/j.fuel.2016.12.003
99
G. Herz, C. Rix, E. Jacobasch, N. Müller, E. Reichelt, M. Jahn, A. Michaelis, Economic assessment of Power-to-Liquid processes - Influence of electrolysis technology and operating conditions, Appl. Energy 292 (2021) 116655. 10.1016/j.apenergy.2021.116655
100
Available at: <https://mcphy.com/en/achievements/power-to-gas-en/audi/>, 2018.
101
Available at: <https://www.carbonrecycling.is/projects>, 2021.
102
Available at: <https://www.siemens-energy.com/global/en/news/magazine/2021/haru-oni.html>, 2021.
103
Available at: <https://www.norsk-e-fuel.com/en/>, 2021.
104
Available at: <https://nordicelectrofuel.no/faq/>, 2021.
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 27
  • No :1
  • Pages :37-57
  • Received Date : 2022-02-15
  • Revised Date : 2022-03-02
  • Accepted Date : 2022-03-11