All Issue

2020 Vol.25, Issue 3 Preview Page

Research Article


September 2020. pp. 39-47
Abstract


References
1 
E. Buyukkaya, Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics, Fuel, 89 (2010) 3099-3105.
10.1016/j.fuel.2010.05.034
2 
Y.J. Lee, Status of Biodiesel as a Diesel Fuel Alternative, Trans. Korean Soc. Auto. Eng., 28(5) (2006) 16-23.
3 
S.K. Hoekman, C. Robbins, Review of the effects of biodiesel on NOX emissions, Fuel Process. Technol., 96 (2012) 237-249.
10.1016/j.fuproc.2011.12.036
4 
L. Chen, Y.K. Cheng, K.K. Song, A study on exhaust emission characteristics in diesel engine with biodiesel fuel, Conference of KSME, May, 2014, 43-46.
5 
S.H. Cho, K.C. Oh, C.H. Lee, D.J. Kim, J.I. Lee, C.B. Lee, The effect of biodiesel on heavy duty diesel engine with SCR system, Conference of KSME, November, 2007, 320-325.
6 
J.H. Song, J.M. Alam, A.L. Boehman, Impact of alternative fuels on soot properties and DPF regeneration, Combust. Sci. Technol., 179(9) (2007) 1991-2037.
10.1080/00102200701386099
7 
R.L. Muncrief, C.W. Rooks, M. Cruz, M.P. Harold, Combining biodiesel and exhaust gas recirculation for reduction in NOX and particulate emissions, Energy Fuels, 22 (2008) 1285-1296.
10.1021/ef700465p
8 
S.M. Oh, Characteristics of low temperature diesel combustion for biodiesel, Conference of KOSCO, November, 2012, 275-283.
9 
M. Zheng, M.C. Mulenga, G.T. Reader, M. Wang, D.S.K. Ting, J. Tjong, Biodiesel engine performance and emissions in low temperature combustion, Fuel, 87 (2008) 714-722.
10.1016/j.fuel.2007.05.039
10 
M. Gomaa, A.J. Alimin, K.A. Kamarudin, The effect of EGR rates on NOX and smoke emissions of an IDI diesel engine fuelled with Jatropha biodiesel blends, Int. J. Energy Environ., 2(3) (2011) 477-490.
11 
D. Agarwal, S. Sinha, A.K. Agarwal, Experimental investigation of control of NOX emissions in biodiesel-fueled compression ignition engine, Renewable Energy, 31 (2006) 2356-2369.
10.1016/j.renene.2005.12.003
12 
S.K. Yoon, N.J. Choi, Effects of Bio-diesel blending rate on the Combustion and Emission Characteristics in a Common Rail Diesel Engine with EGR rate, J. Korean Soc. Power Syst. Eng., 18(2) (2014) 5-11.
10.9726/kspse.2014.18.2.005
13 
J.H. Jang, S.M. OH, Y.G. Lee, S.Y. Lee, Extension of Low Temperature Combustion Regime by Turbocharging Using Diesel and Biodiesel Fuels, Trans. Korean Soc. Mech. Eng. B, 36(11) (2012) 1065-1072.
10.3795/KSME-B.2012.36.11.1065
14 
O. Herbient, W.J. Pitz, C.K, Westbrook, Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate, Combust. Flame, 154 (2008) 507-528.
10.1016/j.combustflame.2008.03.003
15 
O. Herbient, W.J. Pitz, C.K, Westbrook, Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate, Combust. Flame, 157 (2010) 893-908.
10.1016/j.combustflame.2009.10.013
16 
J.M. Desantes, J.J. López, S. Molina, D. López-Pintor, Design of synthetic EGR and simulation study of the effect of simplified formulations on the ignition delay of isooctane and n-heptane, Energy Convers. Manage., 96 (2015) 521-531.
10.1016/j.enconman.2015.03.003
17 
B.W. Ryu, S.W. Park, C.S. Lee, A Study on the Reduction of Reaction Mechanism for the Ignition of Dimethyl Ether, Trans. Korean Soc. Mech. Eng. B, 35(1) (2011) 75-82.
10.3795/KSME-B.2011.35.1.075
18 
Y. Putrasari, N. Jamsran, O. Lim, An investigation on the DME HCCI autoignition under EGR and boosted operation, Fuel, 200 (2017) 447-457.
10.1016/j.fuel.2017.03.074
19 
J.W. Jung , Y.C. Lim, H.K. Suh, A Study on the NOX Formation Characteristics and Detailed Chemical Reaction Pathways of Biodiesel in the Various Ambient Conditions, J. Korean Soc. Combust., 23(2) (2018) 27-34.
10.15231/jksc.2018.23.2.027
20 
A.M. Dean, J.W. Bozzelli, Combustion Chemistry of Nitrogen, Gas-Phase Combustion Chemistry, (2000) 125-341.
10.1007/978-1-4612-1310-9_2
21 
L.C. Stan, D.E. Mitu, Simplified mechanism used to estimate the NOX emission of Diesel engine, 2nd International Conference on Manufacturing Engineering, 2010, 61-64.
22 
Y. Iwabuchi, K. Kawai, T. Shoji, Y. Takeda, Trial of New Concept Diesel Combustion System - Premixed Compression- gnited Combustion -, SAE technical paper, 108(3) (1999) 125-341.
10.4271/1999-01-0185
23 
W. Glewen, C. Meyer, D. Foster, M. Andrie, R. Krieger, Sources and Tradeoffs for Transient NO and UHC Emissions with Low Temperature Diesel Combustion, SAE technical paper, 2011.
10.4271/2011-01-1356
24 
G.Y. Li, A.Q. Li, H. Zhang, J.P. Wang, S.Y. Chen, Y.H. Liang, Theoretical study of the CO formation mechanism in the CO2 gasification of lignite, Fuel, 211 (2018) 353-362.
10.1016/j.fuel.2017.09.030
25 
D.A. Parkes, The ultraviolet absorption spectra of the acetyl radical and the kinetics of the CH3 + CO reaction at room temperature, Chem, Phys. Letters, 77(3) (1981) 527-532.
10.1016/0009-2614(81)85201-3
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 25
  • No :3
  • Pages :39-47
  • Received Date :2020. 05. 31
  • Revised Date :2020. 06. 18
  • Accepted Date : 2020. 07. 17