All Issue

2021 Vol.26, Issue 2 Preview Page

Research Article

30 June 2021. pp. 40-52
Abstract
References
1
J.H. Jung, H.T. Kim, Removal Phenomenon of Black Core in Clay Brick Containing High Carbon Content, J. Korean Ceram. Soc., 43(5) (2006) 315- 319. 10.4191/KCERS.2006.43.5.315
2
W.G. Lee, L.R. Lim, H.H. Lee, C.H. Sim, Revaluation of Environmental Safety by Heavy Metal Leached from Mine Waste Rock, Korean Soc. Environ. Eng., 2006 1344-1349.
3
S.B. Wang, K.L. Luo, X. Wang, Y.Z. Sun, Estimate of Sulfur, Arsenic, Mercury, Fluorine Emissions due to Spontaneous Combustion of Coal Gangue: An Important Part of Chinese Emission Inventories, Environ. Pollut., 209 (2016) 107-113. 10.1016/j.envpol.2015.11.02626650082
4
S.J. Oh, S.C. Kim, J.I. Ko, J.S. Lee, J.E. Yang, Evaluating Stabilization Efficiency of Coal Combustion Ash (CCA) for Coal Mine Wastes: Column Experiment, Korean J. Soil Sci. Fert., 44(6) (2011) 1071-1079. 10.7745/KJSSF.2011.44.6.1071
5
X. Querol, M. Lzquierdo, E. Monfort, E. Alvarez, O. Font, T. Moreno, A. Alastuey, X. Zhuang, W. Lu, Y. Wang, Environmental Characterization of Burnt Coal Gangue Banks at Yangquan, Shanxi Province, China, Int J Coal Geol., 75 (2008) 93-104. 10.1016/j.coal.2008.04.003
6
J.Y. Li, J.M. Wang, Comprehensive Utilization and Environmental Risks of Coal Gangue: A Review, J. Clean. Prod., 239 (2019) 117946. 10.1016/j.jclepro.2019.117946
7
L.Z. Zhao, Y.F. Du, Y.S Zeng, Z.Z. Kang, B.M. Sun, Sulfur Conversion of Mixed Coal and Gangue during Combustion in a CFB Boiler. Energies, 13(3) (2020) 553. 10.3390/en13030553
8
J.C. Zhang, Y.Q. Huang,M. Zhang,A.C. Liu,H.R. Yang,J.F. Lyu, Combustion Process Model of Gangue and Its Application in the Design of a Circulating Fluidized Bed Boiler, Clean Coal Technol., 24(1) (2018). 10.1016/j.crcon.2018.11.003
9
Y.X. Guo, Y.Y. Zhang, F.Q. Cheng, Industrial Development and Prospect about Comprehensive Utilization of Coal Gangue. CIESC Journal, 67(7) (2014) 2443-2453.
10
G.X. Yue, J.F. Lyu, P. Xu, X.K. Hu,W. Ling, Y. Chen,J.F. Li, The Up-To-Date Development and Future of Circulating Fluidized Bed Combustion Technology, Electr. Power, 49 (2016) 1-13. 10.1093/ce/zkx001
11
Z.J. Yi, X.H. Zhang, M. Long, S.G. Wei, W.B. Jiang, Y.G. Yao, Development and Operation of Circulating Fluidized Bed Boiler Burning Pure Coal Gangue, Coal Process. Compr. Util., 4 (2020) 60-64,69.
12
M. Zhang, Q. Bai, Y.P. Liu, Test Study on Mixedly Burning Gangue in CFB Boiler, Therm. Power Gener., 36(4) (2007) 55-57.
13
M. Zhang, R.S. Bie, F.J. Wang, Design and Operation of Large Size Circulating Fluidized Bed Boiler Fired Slurry and Gangue, 20th International Conference on Fluidized Bed Combustion, (2009) 145-150.
14
C. Öner, Ş. Altun, Improved Combustion of Asphaltite Coals in a Rotating Head Combustor with Various Air Supply Arrangements, Energy Fuels, 28 (2014) 2971-2976. 10.1021/ef500196c
15
B. Li, G. Liu, W. Gao, H.Y. Cong, M.S. Bi, L. Ma, J. Deng, C.M. Shu, Study of Combustion Behaviour and Kinetics Modelling of Chinese Gongwusu Coal Gangue: Model-Fitting and Model-Free Approaches. Fuel, 268 (2020) 117284. 10.1016/j.fuel.2020.117284
16
F.R. Meng, J.L. Yu, A. Tahmasebi, Y.N Han, Pyrolysis and Combustion Behavior of Coal Gangue in O2/CO2 and O2/N2 Mixtures Using Thermogravimetric Analysis and a Drop Tube Furnace, Energy Fuels, 27(6) (2013) 2923-2932. 10.1021/ef400411w
17
H.D. Lee, J.K. k, Combustion Characteristics of Two Imported Indonesia Coals as a Pulverized Fuel of Thermal Power Plants, J ENERG ENG, 19 (2010) 136-142.
18
S.H Lee, H. Lim, S.D Kim, C.H. Jeon, A Study on Ash Fusibility Temperature of Domestic Thermal Coal Implementing Thermo-Mechanical Analysis, Korean Chem. Eng. Res., 52(2) (2014) 233-239. 10.9713/kcer.2014.52.2.233
19
Y.R Cai, K.L. Tay, Z.M. Zheng, W.M. Yang, H. Wang, G. Zeng, Z.W. Li, S.K. Boon, P. Subbaiah, Modeling of Ash Formation and Deposition Processes in Coal and Biomass Fired Boilers: A Comprehensive Review, Appl. Energy, 230 (2018) 1447-1544. 10.1016/j.apenergy.2018.08.084
20
Y.Y. Zhang, Y.X. Guo, F.Q. Cheng, K.Z. Yan, Y. Cao, Investigation of Combustion Characteristics and kinetics of Coal Gangue with Different Feedstock Properties by Thermogravimetric Analysis. Thermochim. Acta, 614 (2015) 137-148. 10.1016/j.tca.2015.06.018
21
T. Ozawa, Estimation of Activation Energy by Isoconversion Methods. Thermochim. Acta, 203 (1992) 159-165. 10.1016/0040-6031(92)85192-X
22
J. Ren, C.J. Xie, X. Guo, Z.F. Qin, J.Y. Lin, Z. Li, Combustion Characteristics of Coal Gangue Under an Atmosphere of Coal Mine Methane. Energy Fuels, 28(6) (2014) 3688-3695. 10.1021/ef500446j
23
J.H. Flynn, L.A. Wall, General Treatment of the Thermogravimetry of Polymers, J Res Natl Bur Stand A Phys Chem., 70A(6) (1966) 487-523. 10.6028/jres.070A.04331824016PMC6624709
24
R.Z. Hu, Q.Z. Shi, Thermal analysis kinetics, Science Press, Beijng, 2001.
25
L.J.R. Nunesa, R. Godinac, J.C.O. Matias, J.P.S. Catalao, Evaluation of the Utilization of Woodchips as Fuel for Industrial Boilers, J. Clean. Prod., 223 (2019) 270-277. 10.1016/j.jclepro.2019.03.165
26
Y.J. Lee, J.W. Choi, J.H. Park, N.k. Hueon, G.S. Song, S.J. Park, D.W. Lee, J.G. Kim, C.H. Jeon, Y.C. Choi, Techno-Economical Method for the Removal of Alkali Metals from Agricultural Residue and Herbaceous Biomass and Its Effect on Slagging and Fouling Behavior, ACS Sustainable Chem. Eng., 6 (2018) 13056-13065. 10.1021/acssuschemeng.8b02588
27
C. Zhua, H. Tua, Y. Bai, D. Ma, Y.G. Zhao, Evaluation of Slagging and Fouling Characteristics during Zhundong Coal Co-Firing with a Si/Al Dominated Low Rank Coal, Fuel, 254 (2019) 115730. 10.1016/j.fuel.2019.115730
28
X.Y. Huang, X.M. Jiang, X.X. Han, H. Wang, Combustion Characteristics of Fine- and Micro- Pulverized Coal in the Mixture of O2/CO2, Energy Fuel, 22 (2008) 3756-3762. 10.1021/ef800444c
29
G.W. Wang, J.L. Zhang, J.G. Shao, Z.J. Liu, G.H Zhang, T. Xu, J. Guo, H.Y. Wang, R.S. Xu, H. Lin, Thermal Behavior and kinetic Analysis of Co- Combustion of Waste Biomass/Low Rank Coal Blends, Energy Convers. Manage., 124 (2016) 414- 426. 10.1016/j.enconman.2016.07.045
30
Q.Z. Li, C.G. Zhao, X.P. Chen, W.F. Wu, Y.J Li, Comparison of Pulverized Coal Combustion in Air and in O2/CO2 Mixtures by Thermo-Gravimetric Analysis, J. Anal. Appl. Pyrolysis, 85 (2009) 521- 528. 10.1016/j.jaap.2008.10.018
31
C.A. Wang, X.M. Zhang, Y.H. Liu, D.F. Che, Pyrolysis and Combustion Characteristics of Coals in Oxyfuel Combustion, Appl. Energy, 97 (2012) 264-273. 10.1016/j.apenergy.2012.02.011
32
P. Piotrowska, M. Zevenhoven, K. Davidsson, M. Hupa, L.E. Amand, V. Bariꠑsic, E.C. Zabetta, Fate of Alkali Metals and Phosphorus of Rapeseed Cake in Circulating Fluidized Bed Boiler Part 2: Cocombustion with Coal, Energy Fuels 24 (2010) 333-345. 10.1021/ef900822u
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 26
  • No :2
  • Pages :40-52
  • Received Date : 2020-12-12
  • Revised Date : 2020-12-15
  • Accepted Date : 2021-05-17