All Issue

2020 Vol.25, Issue 3 Preview Page

Research Article


September 2020. pp. 21-30
Abstract


References
1 

J.B. Heywood, Internal combustion engine fundamentals, McGraw-Hill, New York (1988).

2 

ENGINESPECS, HONDA GXV120, URL :https://www.engine-specs.net/honda/gxv120.html.

3 

R. Mikalsen, Internal combustion and reciprocating engine systems for small and micro combined heat and power (CHP) applications, Small and Micro Combined Heat and Power (CHP) Systems: Advanced Design, Performance, Materials and Applications. (2011)125-146. doi:10.153 3/9780857092755.2.125.

10.1533/9780857092755.2.125
4 

F. Wankel, ROTARY INTERNAL COMBUSTION ENGINE, US Patent US2,988,065 A (1958).

5 

Wikipedia, Wankel engine, URL : https://en.wikipedia.org/wiki/Wankel_engine.

6 

T.A. Bartrand, E.A. Willis, Rotary engine performance limits predicted by a zero-dimensional model, SAE paper 920301 (1992).

10.4271/920301
7 

N. Shkolnik, A.C. Shkolnik, CYCLOID ROTOR ENGINE, US Patent, US2012-0294747A1 (2012).

8 

J.R. Colbourne, The Geometry of Trochoid Envelopes and Their Application in Rotary Pumps, Mechanism and Machine Theory (1973).

9 

P.J. Gamez-Montero, E. Codina, Flow characteristics of a trochoidal-gear pump using bond graphs and experimental measurement. Part 1, Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 221 (2007) 331-346.

10.1243/09596518JSCE250
10 

M. Leboeuf, J.F. Dufault, M. Nickerson, K. Becker, A. Kopache, N. Shkolnik, A. Shkolnik, M. Picard, Performance of a Low-Blowby Sealing System for a High Efficiency Rotary Engine, SAE Tech. Pap. 2018-April (2018) 1-10.

10.4271/2018-01-0372
11 

N. Shkolnik, A. Shkolnik, Rotary high efficiency hybrid cycle engine, SAE Tech. Pap (2008).

10.4271/2008-01-2448
12 

A. Shkolnik, D. Littera, M. Nickerson, N. Shkolnik, K. Cho, Development of a small rotary SI/CI combustion engine, SAE Tech. Pap. 2014-November (2014).

10.4271/2014-32-0104
13 

D. Littera, M. Nickerson, A. Kopache, G. Machamada, C. Sun, A. Schramm, N. Medeiros, K. Becker, N. Shkolnik, A. Shkolnik, Development of the XMv3 High Efficiency Cycloidal Engine, SAE Tech. Pap. 2015-November (2015).

14 

A. Shkolnik, N. Shkolnik, J. Scarcella, M. Nickerson, A. Kopache, K. Becker, M. Bergin, A. Spitulnik, R. Equiluz, R. Fagan, S. Ahmed, S. Donnelly, T. Costa, Compact, Lightweight, High Efficiency Rotary Engine for Generator, Apu, and Range-Extended Electric Vehicles, (2018) 1-13.

15 

T.J. Costa, M. Nickerson, D. Littera, J. Martins, A. Shkolnik, N. Shkolnik, F. Brito, Measurement and Prediction of Heat Transfer Losses on the XMv3 Rotary Engine, SAE Int. J. Engines. 9 (2016) 2368-2380.

10.4271/2016-32-0033
16 

M. Nickerson, A. Kopache, A. Shkolnik, K. Becker, N. Shkolnik, M. Bergin, A. Spitulnik, K. Mikhailov, R. Equiluz, R. Fagan, S. Ahmed, S. Donnelly, T. Costa, Preliminary Development of a 30 kW Heavy Fueled Compression Ignition Rotary "X" Engine with Target 45% Brake Thermal Efficiency, SAE Tech. Pap. 2018-April (2018) 1-10.

10.4271/2018-01-0885
17 

B.H. Yu, Y.H. Lee, C.E. Lee, B.C. Lee, G.G. Lee, ROTARY ENGINE, KR Patent, KR10-2015-0185404, (2015).

18 

C.E. Lee, H.H. Yu, D.H. Kim, T.J, Park, Validation of CFD Analysis and Flow Characteristics of GP3 Rotary Engine at Motoring Condition, J. Korean Soc. Combust, in submitted.

19 

Richards, K. Senecal, P. K., and Pomraning, E., CONVERGE 2.4, Covergent Science, madison, WI (2018).

20 

P. K. Senecal et al., "Multi-dimensional modeling of direct-injection diesel spray liquid length and flame lift-off length using cfd and parallel detailed chemistry," SAE Tech. Pap., no. 724, (2003).

10.4271/2003-01-1043
21 

R.J. Kee, F. M. Rupley, J. A. Miller, Chemkin-Ⅱ: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics, Sandia National Labs., Livermore, CA (United States) (1996).

10.2172/481621
22 

J. Yang, C. Ji, S. Wang, D. Wang, Z. Ma, B. Zhang, Numerical investigation on the mixture formation and combustion processes of a gasoline rotary engine with direct injected hydrogen enrichment, Appl Energ, Volume 224, 15 August (2018), 34-41.

10.1016/j.apenergy.2018.04.092
23 

S.R. Turns, An Introduction to Combustion Concepts and Applications (thirded.), McGraw-Hill, New York, (2012).

24 

G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr, V.V. Lissianski, Z. Qin, GRI-Mech 3.0 (1999).

25 

A. Babajimopoulos, D.N. Assanis, D.L. Flowers, S.M. Aceves and R.P. Hessel, A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model with Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines, Int J Engine Res 6(5), (2005) 497-512.

10.1243/146808705X30503
26 

M. Raju, M. Wang, M. Dai, W. Piggott, D. Flowers, Acceleration of detailed chemical kinetics using multi-zone modeling for CFD in internal combustion engine simulations, SAE Technical Paper 2012- 01-0135 (2012).

10.4271/2012-01-0135
27 

WW. Pulkrabek, Engineering fundamentals of the internal combustion engine, Prentice Hall, (1997).

Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 25
  • No :3
  • Pages :21-30
  • Received Date :2020. 05. 05
  • Revised Date :2020. 05. 28
  • Accepted Date : 2020. 07. 14