All Issue

2023 Vol.28, Issue 4 Preview Page

Research Article

31 December 2023. pp. 36-42
Abstract
References
1
A.M. Elbaz, S. Wang, T.F. Guiberti, W.L. Roberts, Review on the recent advances on ammonia combustion from the fundamentals to the applications, Fuel Commun. 10 (2022) 100053. 10.1016/j.jfueco.2022.100053
2
H. Lee, M.-J. Lee, Recent Advances in Ammonia Combustion Technology in Thermal Power Generation System for Carbon Emission Reduction, Energies 14 (2021) 5604. 10.3390/en14185604
3
A. Valera-Medina, H. Xiao, M. Owen-Jones, W.I.F. David, P.J. Bowen, Ammonia for power, Prog. Energy Combust. Sci. 69 (2018) 63-102. 10.1016/j.pecs.2018.07.001
4
T. Lee, Y.T. Guahk, N. Kim, H. Lee, M.J. Lee, Stability and emission characteristics of ammonia-air flames in a lean-lean fuel staging tangential injection combustor, Combust. Flame 248 (2023) 112593. 10.1016/j.combustflame.2022.112593
5
A. Valera-Medina, H. Xiao, M. Owen-Jones, W.I.F. David, P.J. Bowen, Ammonia-methane combustion in tangential swirl burners for gas turbine power generation, Appl. Energy 185 (2017) 1362-1371. 10.1016/j.apenergy.2016.02.073
6
E.C. Okafor, M. Tsukamoto, A. Hayakawa, K.D. K.A. Somarathne, T. Kudo, T. Tsujimura, H. Kobayashi, Influence of wall heat loss on the emission characteristics of premixed ammonia-air swirling flames interacting with the combustor wall, Proc. Combust. Inst. 38 (2021) 5139-5146. 10.1016/j.proci.2020.06.142
7
A.A. Khateeb, T.F. Guiberti, X. Zhu, M. Younes, A. Jamal, W.L. Roberts, Stability limits and exhaust NO performances of ammonia-methane-air swirl flames, Exp. Therm. Fluid Sci., 114 (2020) 110058. 10.1016/j.expthermflusci.2020.110058
8
K. Bioche, L. Bricteux, A. Bertolino, A. Parente, J. Blondeau, Large Eddy Simulation of rich ammonia/ hydrogen/air combustion in a gas turbine burner, Int. J. Hydrogen Energy 46 (2021) 39548-39562. 10.1016/j.ijhydene.2021.09.164
9
G. Vignat, D. Durox, S. Candel, The suitability of different swirl number definitions for describing swirl flows: Accurate, common and (over-) simplified formulations, Prog. Energy Combust. Sci. 89 (2022) 100969. 10.1016/j.pecs.2021.100969
10
I. Hu, S.M. Correa, Calculations of turbulent flames using a PSR microstructural library, Symp. (Int.) on Combust. 26 (1996) 307-313. 10.1016/S0082-0784(96)80230-X
11
Z. Chen, V.M. Reddy, S. Ruan, N.A.K. Doan, W.L. Roberts, N. Swaminathan, Simulation of MILD combustion using Perfectly Stirred Reactor model, Proc. Combust. Inst. 36 (2017) 4279-4286. 10.1016/j.proci.2016.06.007
12
J.P.H. Sanders, J.-Y. Chen, I. Gökalp, Flamelet-based modeling of NO formation in turbulent hydrogen jet diffusion flames, Combust. Flame 111 (1997) 1-15. 10.1016/S0010-2180(97)00094-1
13
A. Stagni, C. Cavallotti, S. Arunthanayothin, Y. Song, O. Herbinet, F. Battin-Leclerc, T. Faravelli, An experimental, theoretical and kinetic-modeling study of the gas-phase oxidation of ammonia, React. Chem. Eng. 5 (2020) 696-711. 10.1039/C9RE00429G
14
Cantera 2.6.0, an open-source suite of tools for problems involving chemical kinetics, thermodynamics, and transport processes. Available: https:// cantera.org/
15
B. Mei, J. Zhang, X. Shi, Z. Xi, Y. Li, Enhancement of ammonia combustion with partial fuel cracking strategy: Laminar flame propagation and kinetic modeling investigation of NH3/H2/N2/air mixtures up to 10 atm, Combust. Flame 231 (2021) 111472. 10.1016/j.combustflame.2021.111472
16
E.R. Hawkes, R. Sankaran, J.C. Sutherland, J.H. Chen, Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal CO/H2 kinetics, Proc. Combust. Inst. 31 (2007) 1633-1640. 10.1016/j.proci.2006.08.079
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 28
  • No :4
  • Pages :36-42
  • Received Date : 2023-11-25
  • Revised Date : 2023-12-27
  • Accepted Date : 2023-12-27