All Issue

2020 Vol.25, Issue 1 Preview Page

Research Article

March 2020. pp. 37-47
Abstract
References
1
Barnes I., Operating experience of low grade fuels in circulating fluidised bed combustion (CFBC) boilers, IEA Clean Coal Centre, London UK, 2015, 1-68.
2
Lockwood T., Techno-economic analysis of PC versus CFB combustion technology, IEA Celan Coal Centre, London Uk, 2013, 1-69.
3
L. Duan, C. Zhao, W. Zhou, C. Qu, X. Chen, O2/CO2 coal combustion characteristics in a 50 kWth circulating fluidized bed, Int. J. Greenh. Gas Con., 5 (2011) 770-776.
4
J.A. Lasek, M. Janusz, J. Zuwała., K. Głód., A. Iluk., Oxy-fuel combustion of selected solid fuels under atmospheric and elevated pressures, Energy, 62 (2013) 105-112.
10.1016/j.energy.2013.04.079
5
J. Riaza, M.V. Gil, L. Álvarez, C. Pevida, J.J. Pis., F. Rubiera, Oxy-fuel combustion of coal and biomass blends, Energy, 41 (2012) 429-435.
10.1016/j.energy.2012.02.057
6
M.A. Gonzalez-Salazar, Recent developments in carbon dioxide capture technologies for gas turbine power generation, Int. J. Greenh. Gas Con., 34 (2015) 106-116.
10.1016/j.ijggc.2014.12.007
7
R. López, M. Menéndez, C. Fernández, A. Bernardo- Sánchez, The effects of scale-up and coal-biomass blending on supercritical coal oxy-combustion power plants, Energy, 148 (2018) 571-584.
10.1016/j.energy.2018.01.179
8
A. Hnydiuk-Stefan, J. Składzień, Analysis of supercritical coal fired oxy combustion power plant with cryogenic oxygen unit and turbo-compressor, Energy, 128 (2017) 271-283.
10.1016/j.energy.2017.04.021
9
M.A. Habib, M. Nemitalah, R. Ben-Mansour, Recent development in oxy-combustion technology and its applications to gas turbine combustors and ITM reactors, Energy Fuels, 27 (2013) 2-19.
10.1021/ef301266j
10
D.H. Kim, H.J. Ahn, K.Y. Huh, Y.J. Lee, Experimental study of co-combustion characteristics of coal and sewage sludge solid fuel in pilot-scale bubbling fluidized bed, J. Korean Soc. Combust., 24(2) (2019) 41-50.
10.15231/jksc.2019.24.2.041
11
Åmand L.-E., Miettinen-Westberg H., Karlsson M., Leckner B., Lücke K., Budinger S., Hartge E.-U.,. Werther J., Co-combustion of dried sewage sludge and coal the fate of heavy metals, The 16th international conference on Fluidized Bed Combustion, May 13th-16th, 2001, 1-13.
12
D.R. McIlveen-Wright, Y. Huang, S. Rezvani, J.D. Mondol, D. Redpath, M. Anderson, N.J. Hewitt, B.C. Williams, A Techno-economic assessment of the reduction of carbon dioxide emissions through the use of biomass co-combustion, Fuel, 90 (2011) 11-18.
10.1016/j.fuel.2010.08.022
13
T.Y. Mun, M.H. Cho, J.S. Kim, Air gasification of dried sewage sludge in a two-stage gasifier. Part 3: Application of olivine as a bed material and nickel coated distributor for the production of a clean hydrogen-rich producer gas, Int. J. Hydrogen Energy, 39 (2014) 5634-5643.
10.1016/j.ijhydene.2014.01.173
14
T.Y. Mun, Z.T. Tefera, U.D. Lee, J.W. Lee, W. Yang, Evaluation of plant performance during biomass co-firing in pulverized coal power plant, J. Korean Soc. Combust., 19(3) (2014) 8-17.
10.15231/jksc.2014.19.3.008
15
Johnsson F., Pallarès D., Solids back-mixing in CFB-Furnaces, The 14th international conference on fluidization, May 26th-31th, 2013, 1-9.
16
D.W. Kim, K.I. Park, J.M. Lee, Y.C. Bae, Characteristics of co-combustion of wood pellet with sub-bituminus coal in a pilot CFB combusto", Trans. Korean Hydro. New Energy Soc., 30(5) (2019) 436-447.
17
J.J. Xie, X.M. Yang, L. Zhang, T.L. Ding, W.L. Song, W.G. Lin, Emissions of SO2, NO and N2O in a circulating fluidized bed combustor during co-firing coal and biomass, J. Environ. Sci., 19 (2007) 109-116.
10.1016/S1001-0742(07)60018-7
18
H. Saastamoinen, T. Leino, Fuel staging and air staging to reduce nitrogen emission in the CFB combustion of bark and coal, Energy Fuels, 33 (2019) 5732-5739.
10.1021/acs.energyfuels.9b00850
19
J. Qin, R. Zhao, T. Chen, Z. Zi, J. Wu, Co-combustion of municipal solid waste and coal gangue in a circulating fluidized bed combustor, Int. J. Coal Sci. Technol., 6 (2019) 218-224.
10.1007/s40789-018-0231-4
20
J.H. Moon, S.H. Jo, S.J. Park, H.K. Nguyen, M.W. Seo, H.W. Ra, S.J. Yoon, S.M. Yoon, J.G. Lee, T.Y. Mun, Carbon dioxide purity and combustion characteristics of oxy firing compared to air firing in a pilot-scale circulating fluidized bed, Energy, 166 (2019) 183-192.
10.1016/j.energy.2018.10.045
21
X. Hu, X. Li, G. Luo, H. Yao, Homogeneous and heterogeneous contributions of CO2 and recycled NO to NO emission difference between air and oxy-coal combustion, Fuel, 163 (2016) 1-7.
10.1016/j.fuel.2015.09.030
22
L. Duan, H. Sun, C. Zhao, W. Zhou, X. Chen, Coal combustion characteristics on an oxy-fuel circulating fluidized bed combustor with warm flue gas recycle, Fuel, 127 (2014) 47-51.
10.1016/j.fuel.2013.06.016
23
J.H. Moon, S.H. jo, T.Y. Mun, S.J. Park, J.Y. Kim, H.K. Nguyen, J.G. Lee, Oxy combustion characteristics of anthracite in a 100 kWth circulating fluidized bed system, Korean Chem. Eng. Res., 57(3) (2019) 400-407.
24
A.M. Gyul'maliev, M. Ya. Shpirt, Calculation of the enthalpy of formation of coal organic matter, Solid Fuel Chem., 42 (2008) 263-267.
10.3103/S0361521908050017
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 25
  • No :1
  • Pages :37-47
  • Received Date :2019. 10. 21
  • Revised Date :2019. 11. 19
  • Accepted Date : 2019. 12. 11