All Issue

2020 Vol.25, Issue 4 Preview Page

Research Article

31 December 2020. pp. 47-55
Abstract
References
1
The 8th basic plane of long-term electricity supply and demand, Ministry of Trade Industry and Energy, 2017.
2
J.R. Son, The technical level and global market trend analysis of gas turbines for power generation, R&D report, Korea Institute of Energy Technology Evaluation and Planning, <http://www.alio.go.kr/informationResearchView.do?seq=2364609>, 2018.
3
J.H. Cho, T.H. Yoon, Y.K. Kim, An induced impact analysis of a LNG power plant in korea, Korea Energy Economic Review, 17 (2018) 265-286.
4
Enforcement rule of the clean air conservation act, Ministry of Environment, Republic of Korea, <http://www.law.go.kr/%EB%B2%95%EB%A0%B9/%EB%8C%80%EA%B8%B0%ED%99%98%EA%B2%BD%EB%B3%B4%EC%A0%84%EB%B2%95%EC%8B%9C%ED%96%89%EA%B7%9C%EC%B9%99>
5
S.R. Turns, An Introduction to Combustion: Concepts and Applications, McGraw-Hill Education, USA, 2012.
6
A.H. Lefebvre, Gas Turbine Combustion, CRC Press, USA, 2010. 10.1201/9781420086058
7
Dry low NOX 2.6+ combustion system 9FA/9FB gas turbines, GE Power, USA, 2016.
8
A. Kundu, Combustion characteristics of a swirl dry low emission burner concept for gas turbine application, Ph.D Thesis, Lund University, Sweden, 2016.
9
S. Fukuba, Y. Kimura, Y. Tanaka, M. Isono, S. Takiguchi, T. Saitoh, K. Saithoh, Experimental and numerical investigation of DLN combustion for a heavy duty gas turbine, GPPF 165 (2017).
10
W. Hubschmid, R. Bombach, A. Inauen, F. Guthe, Thermoacoustically driven flame motion and heat release variation in a swirl-stabilized gas turbine burner investigated by LIF and chemiluminescence, Exp. Fluids, 45 (2008) 167-182. 10.1007/s00348-008-0497-1
11
R.K. Bompelly, Lean blowout and its robust sensing in swirl combustors, Ph.D Thesis, Georgia Institute of Technology, USA, 2013.
12
T. Gassoumi, K. Guedri, R. Said, Numerical study of the swirl effect on a coaxial jet combustor flame including radiative heat transfer, Numer. Heat Transfer. Part A, 56 (2009) 897-913. 10.1080/10407780903466535
13
Y.A. Cengel, J.M. Cimbala, Fluid Mechanics : Fundamentals and applications, McGraw-Hill Higher Education, USA, 2013.
14
J.P. Miranda, F.T. Pinho, P.J. Oliverira, Local loss coefficient in sudden expansion laminar flows of inelastic shear thinning fluids, COBEM (2003).
15
F. Biagioli, F. Guthe, Effect of pressure and fuel-air unmixedness on NOX emissions from industrial gas turbine burners, Combust. Flame, 151 (2007) 274-288. 10.1016/j.combustflame.2007.04.007
16
R.K. Mongia, E. Tomita, F.K. Hsu, L. Talbot, R.W. Dibble, Use of an optical probe for time-resolved in situ measurement of local air-to-fuel ration and extent of fuel mixing with applications to low NOX emissions in premixed gas turbines, Symposium on Combustion, 26 (1996) 2749-2755. 10.1016/S0082-0784(96)80112-3
17
C.H. Cho, G.M. Baek, C.H. Sohn, J.H. Cho, H.S. Kim, A numerical approach to reduction of NOX emission from swirl premix burner in a gas turbine combustor, Appl. Therm. Eng., 59 (2013) 454-463. 10.1016/j.applthermaleng.2013.06.004
18
S. Li, F. Zhongguan, S. Yazhou, W. Ruixin, Z. Hui, LES of swirl angle on combustion dynamic and NOx formation in a hybrid industrial combustor, IJHT, 34 (2016) 197-206. 10.18280/ijht.340207
19
D.C. Kim, S. Lee, C.H. Hwang, M.C. Shin, Characteristics of NOx emission with various furnace diameter of premixed swirl burner, Symposium on Korean Soc. Combus., 38 (2009).
20
H. J. Ju, J.H. Cho, J.J. Hwang, M.K. Kim, H.S. Kim, The GUI program development for design of micro gas turbine combustor, Trans. Korean Soc. Mech. Eng. B, 42 (2018) 833-841. 10.3795/KSME-B.2018.42.12.833
21
J.M. Beer, N.A. Chigier, Combustion Aerodynamics, Applied Science Publishers, UK, 1972.
22
ANSYS Fluent User's Guide, v17.2, 2017.
23
A. Kazakov, M. Frenklach, GRI 1.2, <http://combustion.berkeley.edu/gri-mech/new21/version12/text12.html>, 1994.
24
C.L. Cha, S.S. Hwang, Numerical study on combustion characteristics of hydrogen gas turbine combustor using cross flow micro-mix system, J. Korean Soc. Combust. 24 (2019) 17-25. 10.15231/jksc.2019.24.3.017
25
H. Jia, C. Zou, L. Lu, H. Zheng, Xiang Qjan, H. Yao, Ignition of CH4 intensely diluted with N2 and CO2 versus hot air in a counterflow jets, Energy, 165 (2018) 315-325. 10.1016/j.energy.2018.09.081
26
J.P. Bouchez, R.J. Goldstein, Impingement cooling from a circular jet in a cross flow, Int. J. Heat Mass Transfer, 18 (1975) 719-730. 10.1016/0017-9310(75)90201-X
27
T. Cai, A. Tang, D. Zhao, C. Zhou, Q. Huang, Flame dynamics and stability of premixed methane/air in micro-planar quartz combustor, Energy, 193 (2020) 116767. 10.1016/j.energy.2019.116767
28
D.G. Nortom, D.G. Vlachos, Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures, Chem. Eng. Sci., 58 (2003) 4871-4882. 10.1016/j.ces.2002.12.005
29
S. Mohammadnejad, P. Vena, S. Yun, S. Kheirkhah, Internal structure of hydrogen-enriched methane-air turbulent premixed flames: flamelet and non-flamelet behavior, Combust. Flame, 208 (2019) 139-157. 10.1016/j.combustflame.2019.06.016
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 25
  • No :4
  • Pages :47-55
  • Received Date : 2020-11-11
  • Revised Date : 2020-12-03
  • Accepted Date : 2020-12-15