All Issue

2023 Vol.28, Issue 1

Research Article

31 March 2023. pp. 1-8
Abstract
References
1
S. Marragou, H. Magnes, T. Poinsot, L. Selle, T. Schull, Stabilization regimes and pollutant emissions from a dual fuel CH4/H2 and dual swirl low NOx burner, Int. J. Hydrog. Energy, 47 (44) (2022) 19275-19288. 10.1016/j.ijhydene.2022.04.033
2
K. Kikuchi, T Motegi, T. Hori, F. Akamatsu, Influence of nozzle design parameters on exhaust gas characteristics in practical-scale flameless hydrogen combustion, Int. J. Hydrog. Energy, 47 (49) (2022) 21287-21297. 10.1016/j.ijhydene.2022.04.230
3
X. Liu, W. Shao, C. Liu, X. Bi, Y. Liu, Y. Xiao, Numerical study of a high-hydrogen micromix model burner using flamelet-generated manifold, Int. J. Hydrog. Energy, 46 (39) (2021) 20750-20764. 10.1016/j.ijhydene.2021.03.157
4
J.A. Wṻnning, J.G. Wṻnning, Flame-Less Oxidation to Reduce Thermal NO- Formation, Prog. Energy Combust. Sci., 23 (1) (1997) 81-94. 10.1016/S0360-1285(97)00006-3
5
N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, 2000. 10.1017/CBO9780511612701
6
G. Sarras, Y. Mahmoudi, L. Arteaga Mendez, E. van Veen, M. Tummers, D. Roekaerts, Modeling of Turbulent Natural Gas and Biogas Flames of the Delft Jet-In-Hot-Coflow Burner: Effects of Coflow Temperature, Fuel Temperature and Fuel Composition on the Flame Lift-Off Height, Flow Turbul. Combust., 93 (4) (2014) 607-635. 10.1007/s10494-014-9555-3
7
C. Rodrigues, M. Tummers, E. van Veen, D.J.E.M. Roekaerts, Effects of coflow temperature and composition on ethanol spray flamesin hot-diluted coflow, Int. J. Heat Fluid Flow, 51 (2015) 309-323. 10.1016/j.ijheatfluidflow.2014.10.006
8
E. Oldenhof, M.J. Tummers, E.H. van Veen, D.J.E.M. Roekaerts, Role of Entrainment in the Stabilisation of Jet-In-Hot-Coflow Flames, Combust. Flame, 158 (8) (2011) 1553-1563. 10.1016/j.combustflame.2010.12.018
9
B. Bhatia, A. De, D. Roekaerts,A. Masri, Numerical analysis of dilute methanol spray flames in vitiated coflow using extended flamelet generated manifold model, Phys. Fluids, 34 (2022) 075111. 10.1063/5.0098705
10
H.Y. Lee, C.L. Cha, S.S. Hwang, Numerical investigation on NOX formation in oxygen-CH4 MILD combustion with air leakage, J. Mech. Sci. Tech., 33 (2019) 3733-3741. 10.1007/s12206-019-0715-1
11
F.C. Christo, B.B. Dally, Modeling turbulent reacting jets issuing into a hot and diluted coflow, Combust. Flame, 142 (1-2) (2005) 117-129. 10.1016/j.combustflame.2005.03.002
12
P.H. Lee, S.S. Hwang, NOx Formation in Hydrogen-Methane Turbulent Partially Premixed Flame Under MILD Combustion Condition, Trans. Korean Soc. Mech. Eng. B, 41 (12) (2017) 821-828. 10.3795/KSME-B.2017.41.12.821
13
B.B. Dally, A.N. Karpetis, R.S. Barlow, Structure of turbulent non-premixed jet flames in a diluted hot co-flow, Proc. Combust. Inst, 29 (1) (2002) 1147-1154. 10.1016/S1540-7489(02)80145-6
14
A. Mardani, S. Tabejamaat, M. Ghamari. Numerical study of influence of molecular diffusion in the Mild combustion regime. Combust. Theory Model, 14 (2010) 747-774.(1) (2002) 1147-1154. 10.1080/13647830.2010.512959
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 28
  • No :1
  • Pages :1-8
  • Received Date : 2023-01-15
  • Revised Date : 2023-02-02
  • Accepted Date : 2023-02-02