All Issue

2024 Vol.29, Issue 1 Preview Page

Research Article

31 March 2024. pp. 48-56
Abstract
References
1
W.D. York, W.S. Ziminsky, E. Yilmaz, Development and testing of a low NOx hydrogen combustion system for heavy-duty gas turbines, J. Eng. Gas Turb. Power., 135 (2013) 022001. 10.1115/1.4007733
2
M.A. Nemitallah, S.S. Rashwan, I.B. Mansir, A.A. Abdelhafez, M.A. Habib, Review of novel combustion techniques for clean power production in gas turbines, Energy Fuels, 32 (2018) 979-1004. 10.1021/acs.energyfuels.7b03607
3
D. Kim, Review on the development trend of hydrogen gas turbine combustion technology, J. Korean Soc. Combust., 24 (2019) 1-10. 10.15231/jksc.2019.24.4.001
4
H. Kim, U. Jin, Y. Go, M. Choi, I. Gu, M. Baek, K.T. Kim, D. Shin, A review of carbon neutral gas turbine combustion technology, J. Korean Soc. Combust., 27(2) (2022) 14-38. 10.15231/jksc.2022.27.2.014
5
M. Moliere, The fuel flexibility of gas turbines: a review and retrospective outlook, Energies, 16 (2023) 3962. 10.3390/en16093962
6
M.G. Michaud, P.R. Westmoreland, A.S. Feitelberg, Chemical mechanisms of NO formation for gas turbine conditions, Symposium (International) on Combustion, 24 (1992) 879-887. 10.1016/S0082-0784(06)80105-0
7
S.M. Correa, Power generation and aeropropulsion gas turbines: from combustion science to combustion technology, Symp. (Int.) Combust., 27 (1998) 1793-1807. 10.1016/S0082-0784(98)80021-0
8
G.E. Andrews, Ultra-low nitrogen oxides (NOx) emissions combustion in gas turbine systems, in: P. Jansohn, Modern gas turbine systems, Woodhead Publishing, Sawston, 2013, 715-790. 10.1533/9780857096067.3.715
9
P.P. Panda, M. Roa, P. Szedlacsek, W.R. Laster, R.P. Lucht, Structure and dynamics of the wake of a reacting jet injected into a swirling, vitiated crossflow in a staged combustion system, Exp. Fluids., 56 (2015). 10.1007/s00348-014-1885-3
10
P.P. Panda, O. Busari, M. Roa, R.P. Lucht, Flame stabilization mechanism in reacting jets in swirling vitiated crossflow, Combust. Flame., 207 (2019) 302-313. 10.1016/j.combustflame.2019.06.005
11
J.A. Wagner, M.W. Renfro, B.M. Cetegen, Premixed jet flame behavior in a hot vitiated crossflow of lean combustion products, Combust. Flame., 176 (2017) 521-533. 10.1016/j.combustflame.2016.11.014
12
M.D. Sirignano, E. Goh, A. Hoffie, V. Nair, E. Vedanth, B. Emerson,S. Menon, J. Seitzman, T.C. Lieuwen, High temperature, low NOx combustor concept development (Final Technical Report), Georgia Institute of Technology, Atlanta, GA, USA, 2019. 10.2172/1581090
13
J. Hwang, M. Kim, W. Lee, K. Min, D. Kang, H. Kim, Combustion characteristics of axial fuel staging nozzles for gas turbine combustors, J. Korean Soc. Combust., 28(4) (2023) 21-29. 10.15231/jksc.2023.28.4.021
14
S. Candel, Combustion dynamics and control: Progress and challenges, Proc. Combust. Inst., 29 (2002) 1-28. 10.1016/S1540-7489(02)80007-4
15
K.T. Kim, Combustion instability feedback mechanisms in a lean-premixed swirl-stabilized combustor, Combust. Flame., 171 (2016) 137-151. 10.1016/j.combustflame.2016.06.003
16
D. Durox, T. Schuller, N. Noiray, S. Candel, Experimental analysis of nonlinear flame transfer functions for different flame geometries, Proc. Combust. Inst., 32 (2009) 1391-1398. 10.1016/j.proci.2008.06.204
17
T. Lee, K.T. Kim, Direct comparison of self-excited instabilities in mesoscale multinozzle flames and conventional large-scale swirl-stabilized flames, Proc. Combust. Inst., 38 (2021) 6005-6013. 10.1016/j.proci.2020.05.049
18
T. Lee, K.T. Kim, Combustion dynamics of lean fully-premixed hydrogen-air flames in a mesoscale multinozzle array, Combust. Flame., 218 (2020) 234-246. 10.1016/j.combustflame.2020.04.024
19
M.C. Lee, J. Yoon, S. Joo, J. Kim, J. Hwang, Y. Yoon, Investigation into the cause of high multi-mode combustion instability of H2/CO/CH4 syngas in a partially premixed gas turbine model combustor, Proc. Combust. Inst., 35 (2015) 3263-3271. 10.1016/j.proci.2014.07.013
20
H. Kang, M. Lee, K.T. Kim, Measurements of self-excited instabilities and nitrogen oxides emissions in a multi-element lean-premixed hydrogen/methane/air flame ensemble, Proc. Combust. Inst., 39 (2023) 4721-4729. 10.1016/j.proci.2022.07.258
21
O. Schulz, U. Doll, D. Ebi, J. Droujko, C. Bourquard, N. Noiray, Thermoacoustic instability in a sequential combustor: large eddy simulation and experiments, Proc. Combust. Inst., 37 (2019) 5325-5332. 10.1016/j.proci.2018.07.089
22
H.S. Gopalakrishnan, A. Gruber, J.P. Moeck, Computation and prediction of intrinsic thermoacoustic oscillations associated with autoignition fronts, Combust. Flame., 254 (2023) 112844. 10.1016/j.combustflame.2023.112844
23
Y. Choi, K.T. Kim, Mode shape-dependent thermoacoustic interactions between a lean-premixed primary flame and an axially-staged transverse reacting jet, Combust. Flame., 255 (2023) 112884. 10.1016/j.combustflame.2023.112884
24
Y. Choi, K.T. Kim, Strong flame interaction-induced collective dynamics of multi-element lean-premixed hydrogen flames, Int. J. Hydrogen Energy, 48 (2023) 2030-2043. 10.1016/j.ijhydene.2022.10.091
25
N. Lamarque, T. Poinsot, Boundary conditions for acoustic eigenmodes computation in gas turbine combustion chambers, AIAA J., 46 (2008) 2282-2292. 10.2514/1.35388
Information
  • Publisher :The Korean Society Combustion
  • Publisher(Ko) :한국연소학회
  • Journal Title :Journal of The Korean Society Combustion
  • Journal Title(Ko) :한국연소학회지
  • Volume : 29
  • No :1
  • Pages :48-56
  • Received Date : 2024-02-27
  • Revised Date : 2024-03-15
  • Accepted Date : 2024-03-15